These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 30042319)
1. A Realistic Approach for Photoelectrochemical Hydrogen Production. Doukas E; Balta P; Raptis D; Avgouropoulos G; Lianos P Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30042319 [TBL] [Abstract][Full Text] [Related]
2. Photocatalysis for renewable energy production using PhotoFuelCells. Michal R; Sfaelou S; Lianos P Molecules; 2014 Nov; 19(12):19732-50. PubMed ID: 25438083 [TBL] [Abstract][Full Text] [Related]
3. Visible-Light Activated Titania and Its Application to Photoelectrocatalytic Hydrogen Peroxide Production. Santos Andrade T; Papagiannis I; Dracopoulos V; César Pereira M; Lianos P Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31861190 [TBL] [Abstract][Full Text] [Related]
4. Renewable energy production by photoelectrochemical oxidation of organic wastes using WO Raptis D; Dracopoulos V; Lianos P J Hazard Mater; 2017 Jul; 333():259-264. PubMed ID: 28363147 [TBL] [Abstract][Full Text] [Related]
5. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Yang J; Wang D; Han H; Li C Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781 [TBL] [Abstract][Full Text] [Related]
6. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ; Lee SH; Maeda K; Mallouk TE Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000 [TBL] [Abstract][Full Text] [Related]
7. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation. Jin Z; Li P; Xiao D ChemSusChem; 2017 Feb; 10(3):483-488. PubMed ID: 27863111 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous Photoelectrocatalytic Water Oxidation and Oxygen Reduction for Solar Electricity Production in Alkaline Solution. Zhang B; He L; Yao T; Fan W; Zhang X; Wen S; Shi J; Li C ChemSusChem; 2019 Mar; 12(5):1026-1032. PubMed ID: 30747497 [TBL] [Abstract][Full Text] [Related]
9. Standalone anion- and co-doped titanium dioxide nanotubes for photocatalytic and photoelectrochemical solar-to-fuel conversion. Ding Y; Nagpal P Nanoscale; 2016 Oct; 8(40):17496-17505. PubMed ID: 27714097 [TBL] [Abstract][Full Text] [Related]
10. Fuel Production from Seawater and Fuel Cells Using Seawater. Fukuzumi S; Lee YM; Nam W ChemSusChem; 2017 Nov; 10(22):4264-4276. PubMed ID: 28914497 [TBL] [Abstract][Full Text] [Related]
11. Remediation of simulated malodorous surface water by columnar air-cathode microbial fuel cells. Wang H; Fu B; Xi J; Hu HY; Liang P; Huang X; Zhang X Sci Total Environ; 2019 Oct; 687():287-296. PubMed ID: 31207518 [TBL] [Abstract][Full Text] [Related]
12. Near-Complete Suppression of Oxygen Evolution for Photoelectrochemical H Zhang K; Liu J; Wang L; Jin B; Yang X; Zhang S; Park JH J Am Chem Soc; 2020 May; 142(19):8641-8648. PubMed ID: 32160742 [TBL] [Abstract][Full Text] [Related]
13. A solar responsive photocatalytic fuel cell with the membrane electrode assembly design for simultaneous wastewater treatment and electricity generation. He X; Chen M; Chen R; Zhu X; Liao Q; Ye D; Zhang B; Zhang W; Yu Y J Hazard Mater; 2018 Sep; 358():346-354. PubMed ID: 30005246 [TBL] [Abstract][Full Text] [Related]
14. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Li Y; Zhang L; Torres-Pardo A; González-Calbet JM; Ma Y; Oleynikov P; Terasaki O; Asahina S; Shima M; Cha D; Zhao L; Takanabe K; Kubota J; Domen K Nat Commun; 2013; 4():2566. PubMed ID: 24089138 [TBL] [Abstract][Full Text] [Related]
15. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231 [TBL] [Abstract][Full Text] [Related]
16. Use of Chalcogenide-Semiconductor-Sensitized Titania to Directly Charge a Vanadium Redox Battery. Santos Andrade T; Keramidas A; Lianos P Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32526989 [TBL] [Abstract][Full Text] [Related]
17. Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode. Qin Y; Li Y; Tian Z; Wu Y; Cui Y Nanoscale Res Lett; 2016 Dec; 11(1):32. PubMed ID: 26787051 [TBL] [Abstract][Full Text] [Related]
18. Photoelectrochemical Gas-Electrolyte-Solid Phase Boundary for Hydrogen Production From Water Vapor. Amano F; Shintani A; Mukohara H; Hwang YM; Tsurui K Front Chem; 2018; 6():598. PubMed ID: 30560121 [TBL] [Abstract][Full Text] [Related]
19. Hybrid bio-photo-electro-chemical cells for solar water splitting. Pinhassi RI; Kallmann D; Saper G; Dotan H; Linkov A; Kay A; Liveanu V; Schuster G; Adir N; Rothschild A Nat Commun; 2016 Aug; 7():12552. PubMed ID: 27550091 [TBL] [Abstract][Full Text] [Related]
20. Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges. Wang Q; Hisatomi T; Katayama M; Takata T; Minegishi T; Kudo A; Yamada T; Domen K Faraday Discuss; 2017 Apr; 197():491-504. PubMed ID: 28164191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]