These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30042692)

  • 1. Acidosis and Phosphate Directly Reduce Myosin's Force-Generating Capacity Through Distinct Molecular Mechanisms.
    Woodward M; Debold EP
    Front Physiol; 2018; 9():862. PubMed ID: 30042692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin.
    Jarvis K; Woodward M; Debold EP; Walcott S
    J Muscle Res Cell Motil; 2018 Aug; 39(3-4):135-147. PubMed ID: 30382520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidosis decreases the Ca
    Unger M; Debold EP
    Am J Physiol Cell Physiol; 2019 Oct; 317(4):C714-C718. PubMed ID: 31339771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin's powerstroke occurs prior to the release of phosphate from the active site.
    Scott B; Marang C; Woodward M; Debold EP
    Cytoskeleton (Hoboken); 2021 May; 78(5):185-198. PubMed ID: 34331410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate enhances myosin-powered actin filament velocity under acidic conditions in a motility assay.
    Debold EP; Turner MA; Stout JC; Walcott S
    Am J Physiol Regul Integr Comp Physiol; 2011 Jun; 300(6):R1401-8. PubMed ID: 21346239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle Fatigue from the Perspective of a Single Crossbridge.
    Debold EP; Fitts RH; Sundberg CW; Nosek TM
    Med Sci Sports Exerc; 2016 Nov; 48(11):2270-2280. PubMed ID: 27434086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent insights into the relative timing of myosin's powerstroke and release of phosphate.
    Debold EP
    Cytoskeleton (Hoboken); 2021 Sep; 78(9):448-458. PubMed ID: 35278035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of phosphate inhibiting the force-generating capacity of a miniensemble of Myosin molecules.
    Debold EP; Walcott S; Woodward M; Turner MA
    Biophys J; 2013 Nov; 105(10):2374-84. PubMed ID: 24268149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smooth muscle myosin: a high force-generating molecular motor.
    VanBuren P; Guilford WH; Kennedy G; Wu J; Warshaw DM
    Biophys J; 1995 Apr; 68(4 Suppl):256S-258S; 258S-259S. PubMed ID: 7787086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the cellular and molecular mechanisms of skeletal muscle fatigue: The Marion J. Siegman Award Lectureships.
    Debold EP; Westerblad H
    Am J Physiol Cell Physiol; 2024 Jul; ():. PubMed ID: 39069825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positional Isomers of a Non-Nucleoside Substrate Differentially Affect Myosin Function.
    Woodward M; Ostrander E; Jeong SP; Liu X; Scott B; Unger M; Chen J; Venkataraman D; Debold EP
    Biophys J; 2020 Aug; 119(3):567-580. PubMed ID: 32652059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca++-sensitizing mutations in troponin, P(i), and 2-deoxyATP alter the depressive effect of acidosis on regulated thin-filament velocity.
    Longyear TJ; Turner MA; Davis JP; Lopez J; Biesiadecki B; Debold EP
    J Appl Physiol (1985); 2014 May; 116(9):1165-74. PubMed ID: 24651988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear elasticity and an 8-nm working stroke of single myosin molecules in myofilaments.
    Kaya M; Higuchi H
    Science; 2010 Aug; 329(5992):686-9. PubMed ID: 20689017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of phosphate and acidosis on regulated thin-filament velocity in an in vitro motility assay.
    Debold EP; Longyear TJ; Turner MA
    J Appl Physiol (1985); 2012 Nov; 113(9):1413-22. PubMed ID: 23019317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient kinetics and mechanics of myosin's force-generating rotation in muscle: resolution of millisecond rotational transitions in the spin-labeled myosin light-chain domain.
    LaConte LE; Baker JE; Thomas DD
    Biochemistry; 2003 Aug; 42(32):9797-803. PubMed ID: 12911323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An accelerated state of myosin-based actin motility.
    Hooft AM; Maki EJ; Cox KK; Baker JE
    Biochemistry; 2007 Mar; 46(11):3513-20. PubMed ID: 17302393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges.
    Brizendine RK; Alcala DB; Carter MS; Haldeman BD; Facemyer KC; Baker JE; Cremo CR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11235-40. PubMed ID: 26294254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart failure drug changes the mechanoenzymology of the cardiac myosin powerstroke.
    Rohde JA; Thomas DD; Muretta JM
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1796-E1804. PubMed ID: 28223517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smooth, cardiac and skeletal muscle myosin force and motion generation assessed by cross-bridge mechanical interactions in vitro.
    Harris DE; Work SS; Wright RK; Alpert NR; Warshaw DM
    J Muscle Res Cell Motil; 1994 Feb; 15(1):11-9. PubMed ID: 8182105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.