These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30042727)

  • 1. Gaze-Contingent Flicker Pupil Perimetry Detects Scotomas in Patients With Cerebral Visual Impairments or Glaucoma.
    Naber M; Roelofzen C; Fracasso A; Bergsma DP; van Genderen M; Porro GL; Dumoulin SO
    Front Neurol; 2018; 9():558. PubMed ID: 30042727
    [No Abstract]   [Full Text] [Related]  

  • 2. How Free-Viewing Eye Movements Can Be Used to Detect the Presence of Visual Field Defects in Glaucoma Patients.
    Gestefeld B; Marsman JB; Cornelissen FW
    Front Med (Lausanne); 2021; 8():689910. PubMed ID: 34746166
    [No Abstract]   [Full Text] [Related]  

  • 3. Rapid Campimetry-A Novel Screening Method for Glaucoma Diagnosis.
    Müller F; Al-Nosairy KO; Kramer FH; Meltendorf C; Djouoma N; Thieme H; Hoffmann MB; Hoffmann F
    J Clin Med; 2022 Apr; 11(8):. PubMed ID: 35456248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal sensitivity in a hemianopic visual field can be improved by long-term training using flicker stimulation.
    Raninen A; Vanni S; Hyvärinen L; Näsänen R
    J Neurol Neurosurg Psychiatry; 2007 Jan; 78(1):66-73. PubMed ID: 16952915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agreement Between Virtual Reality Perimetry and Static Automated Perimetry in Various Neuro-Ophthalmological Conditions: A Pilot Study.
    Badakere A; Mir AA; Negi R; Kulkarni S; Kekunnaya R; Sachdeva V
    Neuroophthalmology; 2023; 47(5-6):255-261. PubMed ID: 38130807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the sampling frequency of an eye tracker affect the detection of glaucomatous visual field loss?
    Maniarasu P; Shasane PH; Pai VH; Kuzhuppilly NIR; Ve RS; Ballae Ganeshrao S
    Ophthalmic Physiol Opt; 2024 Mar; 44(2):378-387. PubMed ID: 38149468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online Circular Contrast Perimetry via a Web-Application: Establishing a Normative Database for Central 10-Degree Perimetry.
    Chen YX; Meyerov J; Skalicky SE
    Clin Ophthalmol; 2024; 18():201-213. PubMed ID: 38269363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When You Do Not Get the Whole Picture: Scene Perception After Occipital Cortex Lesions.
    Geuzebroek AC; Woutersen K; van den Berg AV
    Front Neurosci; 2021; 15():716273. PubMed ID: 34966253
    [No Abstract]   [Full Text] [Related]  

  • 9. Assessing Higher-Order Visual Processing in Cerebral Visual Impairment Using Naturalistic Virtual-Reality-Based Visual Search Tasks.
    Manley CE; Bennett CR; Merabet LB
    Children (Basel); 2022 Jul; 9(8):. PubMed ID: 35892617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing perceptual chromatic equiluminance using a reflexive pupillary response.
    Liu Y; Mahony BW; Wang X; Daye PM; Wang W; Cavanagh P; Pouget P; Andolina IM
    Sci Rep; 2024 Jan; 14(1):2420. PubMed ID: 38286801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lessons Learned from 23 Years of Experience in Testing Visual Fields of Neurologically Impaired Children.
    Portengen BL; Koenraads Y; Imhof SM; Porro GL
    Neuroophthalmology; 2020; 44(6):361-370. PubMed ID: 33335343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual search performance in cerebral visual impairment is associated with altered alpha band oscillations.
    Bennett CR; Bauer CM; Bex PJ; Bottari D; Merabet LB
    Neuropsychologia; 2021 Oct; 161():108011. PubMed ID: 34474066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Childhood cerebral visual impairment subtype classification based on an extensive versus a limited test battery.
    Philip J; Huurneman B; Jansonius NM; Cillessen AHN; Boonstra FN
    Front Neurosci; 2023; 17():1266201. PubMed ID: 37954874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pilot Study to Improve Cognitive Performance and Pupil Responses in Mild Cognitive Impaired Patients Using Gaze-Controlled Gaming.
    Solé Puig M; Bustos Valenzuela P; Romeo A; Supèr H
    Vision (Basel); 2024 Apr; 8(2):. PubMed ID: 38804346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method to Quickly Map Multifocal Pupillary Response Fields (mPRF) Using Frequency Tagging.
    Lorenceau J; Ajasse S; Barbet R; Boucart M; Chavane F; Lamirel C; Legras R; Matonti F; Rateaux M; Rouland JF; Sahel JA; Trinquet L; Wexler M; Vignal-Clermont C
    Vision (Basel); 2024 Apr; 8(2):. PubMed ID: 38651438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Open-DPSM: An open-source toolkit for modeling pupil size changes to dynamic visual inputs.
    Cai Y; Strauch C; Van der Stigchel S; Naber M
    Behav Res Methods; 2023 Dec; ():. PubMed ID: 38082113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Stimulus Luminance, Stimulus Color and Intra-Stimulus Color Contrast on Visual Field Mapping in Neurologically Impaired Adults Using Flicker Pupil Perimetry.
    Portengen BL; Porro GL; Bergsma D; Veldman EJ; Imhof SM; Naber M
    Eye Brain; 2023; 15():77-89. PubMed ID: 37287993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintaining fixation by children in a virtual reality version of pupil perimetry.
    Portengen BL; Naber M; Jansen D; van den Boomen C; Imhof SM; Porro GL
    J Eye Mov Res; 2022; 15(3):. PubMed ID: 37091859
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.