These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 30042882)
1. Impact of extreme drought and incentive programs on flooded agriculture and wetlands in California's Central Valley. Reiter ME; Elliott NK; Jongsomjit D; Golet GH; Reynolds MD PeerJ; 2018; 6():e5147. PubMed ID: 30042882 [TBL] [Abstract][Full Text] [Related]
2. Waterbird response to variable-timing of drawdown in rice fields after winter-flooding. Sesser KA; Iglecia M; Reiter ME; Strum KM; Hickey CM; Kelsey R; Skalos DA PLoS One; 2018; 13(10):e0204800. PubMed ID: 30286116 [TBL] [Abstract][Full Text] [Related]
3. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley. Matchett EL; Fleskes JP PLoS One; 2017; 12(1):e0169780. PubMed ID: 28068411 [TBL] [Abstract][Full Text] [Related]
4. Using ricelands to provide temporary shorebird habitat during migration. Golet GH; Low C; Avery S; Andrews K; McColl CJ; Laney R; Reynolds MD Ecol Appl; 2018 Mar; 28(2):409-426. PubMed ID: 29205645 [TBL] [Abstract][Full Text] [Related]
5. Quantifying drought's influence on moist soil seed vegetation in California's Central Valley through remote sensing. Byrd KB; Lorenz AA; Anderson JA; Wallace CSA; Moore-O'Leary KA; Isola J; Ortega R; Reiter ME Ecol Appl; 2020 Oct; 30(7):e02153. PubMed ID: 32348601 [TBL] [Abstract][Full Text] [Related]
6. Reconciling fish and farms: Methods for managing California rice fields as salmon habitat. Holmes EJ; Saffarinia P; Rypel AL; Bell-Tilcock MN; Katz JV; Jeffres CA PLoS One; 2021; 16(2):e0237686. PubMed ID: 33626050 [TBL] [Abstract][Full Text] [Related]
7. Effects of drought on the abundance and distribution of non-breeding shorebirds in central California, USA. Barbaree BA; Reiter ME; Hickey CM; Strum KM; Isola JE; Jennings S; Tarjan LM; Strong CM; Stenzel LE; Shuford WD PLoS One; 2020; 15(10):e0240931. PubMed ID: 33085697 [TBL] [Abstract][Full Text] [Related]
8. Invertebrate mercury bioaccumulation in permanent, seasonal, and flooded rice wetlands within California's Central Valley. Ackerman JT; Miles AK; Eagles-Smith CA Sci Total Environ; 2010 Jan; 408(3):666-71. PubMed ID: 19880160 [TBL] [Abstract][Full Text] [Related]
9. Quantifying shorebird habitat in managed wetlands by modeling shallow water depth dynamics. Schaffer-Smith D; Swenson JJ; Reiter ME; Isola JE Ecol Appl; 2018 Sep; 28(6):1534-1545. PubMed ID: 29694689 [TBL] [Abstract][Full Text] [Related]
10. Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study. Windham-Myers L; Fleck JA; Ackerman JT; Marvin-DiPasquale M; Stricker CA; Heim WA; Bachand PA; Eagles-Smith CA; Gill G; Stephenson M; Alpers CN Sci Total Environ; 2014 Jun; 484():221-31. PubMed ID: 24530187 [TBL] [Abstract][Full Text] [Related]
11. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA. Marvin-DiPasquale M; Windham-Myers L; Agee JL; Kakouros E; Kieu le H; Fleck JA; Alpers CN; Stricker CA Sci Total Environ; 2014 Jun; 484():288-99. PubMed ID: 24188689 [TBL] [Abstract][Full Text] [Related]
12. Knowledge coproduction on the impact of decisions for waterbird habitat in a changing climate. Byrd KB; Matchett E; Mengelt C; Wilson TS; DiPietro D; Moritsch M; Conlisk E; Veloz S; Casazza ML; Reiter ME Conserv Biol; 2023 Oct; 37(5):e14089. PubMed ID: 37021386 [TBL] [Abstract][Full Text] [Related]
13. Both real-time and long-term environmental data perform well in predicting shorebird distributions in managed habitat. Conlisk EE; Golet GH; Reynolds MD; Barbaree BA; Sesser KA; Byrd KB; Veloz S; Reiter ME Ecol Appl; 2022 Jun; 32(4):e2510. PubMed ID: 34870360 [TBL] [Abstract][Full Text] [Related]
14. Land Use, anthropogenic disturbance, and riverine features drive patterns of habitat selection by a wintering waterbird in a semi-arid environment. Boggie MA; Collins DP; Donnelly JP; Carleton SA PLoS One; 2018; 13(11):e0206222. PubMed ID: 30403712 [TBL] [Abstract][Full Text] [Related]
15. Wetland hydropattern and vegetation greenness predict avian populations in Palo Verde, Costa Rica. Barchiesi S; Alonso A; Pazmiño-Hernandez M; Serrano-Sandí JM; Muñoz-Carpena R; Angelini C Ecol Appl; 2022 Mar; 32(2):e2493. PubMed ID: 34773674 [TBL] [Abstract][Full Text] [Related]
16. Function of restored wetlands for waterbird conservation in the Yellow Sea coast. Fan J; Wang X; Wu W; Chen W; Ma Q; Ma Z Sci Total Environ; 2021 Feb; 756():144061. PubMed ID: 33280877 [TBL] [Abstract][Full Text] [Related]
18. Crucial sites and environmental variables for wintering migratory waterbird population distributions in the natural wetlands in East Dongting Lake, China. Zou YA; Zhang PY; Zhang SQ; Chen XS; Li F; Deng ZM; Yang S; Zhang H; Li FY; Xie YH Sci Total Environ; 2019 Mar; 655():147-157. PubMed ID: 30469060 [TBL] [Abstract][Full Text] [Related]
19. Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: spatial and seasonal variations in water quality. Alpers CN; Fleck JA; Marvin-DiPasquale M; Stricker CA; Stephenson M; Taylor HE Sci Total Environ; 2014 Jun; 484():276-87. PubMed ID: 24332791 [TBL] [Abstract][Full Text] [Related]
20. Changes in distribution of waterbirds following prolonged drought reflect habitat availability in coastal and inland regions. Wen L; Saintilan N; Reid JR; Colloff MJ Ecol Evol; 2016 Sep; 6(18):6672-6689. PubMed ID: 27777739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]