These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30043141)

  • 21. Numerical study on the thawing process of biological tissue induced by laser irradiation.
    Zhou J; Liu J; Yu A
    J Biomech Eng; 2005 Jun; 127(3):416-31. PubMed ID: 16060348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of varying chromophores used in light-activated protein solders on tensile strength and thermal damage profile of repairs.
    Hoffman GT; Byrd BD; Soller EC; Heintzelman DL; McNally-Heintzelman KM
    Biomed Sci Instrum; 2003; 39():12-7. PubMed ID: 12724861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical phantom materials for near infrared laser photocoagulation studies.
    Iizuka MN; Sherar MD; Vitkin IA
    Lasers Surg Med; 1999; 25(2):159-69. PubMed ID: 10455223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel 450-nm blue laser system for surgical applications: efficacy of specific laser-tissue interactions in bladder soft tissue.
    Jiang DL; Yang Z; Liu GX; Wu K; Fan J; Wu D; Li L; Wang X; Guo P; Mu L; He D
    Lasers Med Sci; 2019 Jun; 34(4):807-813. PubMed ID: 30406852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm.
    Nasouri B; Murphy TE; Berberoglu H
    J Biomed Opt; 2014; 19(7):075003. PubMed ID: 25003752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Lasers in dentistry. Part B--Interaction with biological tissues and the effect on the soft tissues of the oral cavity, the hard tissues of the tooth and the dental pulp].
    Moshonov J; Stabholz A; Leopold Y; Rosenberg I; Stabholz A
    Refuat Hapeh Vehashinayim (1993); 2001 Oct; 18(3-4):21-8, 107-8. PubMed ID: 11806042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface dosimetry for oblique tangential photon beams: a Monte Carlo simulation study.
    Chow JC; Grigorov GN
    Med Phys; 2008 Jan; 35(1):70-6. PubMed ID: 18293563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A noninvasive cross-correlation ultrasound technique for detecting spatial profile of laser-induced coagulation damage--an in vitro study.
    Sun Z; Ying H; Lu J
    IEEE Trans Biomed Eng; 2001 Feb; 48(2):223-9. PubMed ID: 11296878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2007 Aug; 15(17):10649-65. PubMed ID: 19547419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator.
    Lundh O; Rechatin C; Faure J; Ben-Ismaïl A; Lim J; De Wagter C; De Neve W; Malka V
    Med Phys; 2012 Jun; 39(6):3501-8. PubMed ID: 22755730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE.
    Panettieri V; Barsoum P; Westermark M; Brualla L; Lax I
    Radiother Oncol; 2009 Oct; 93(1):94-101. PubMed ID: 19541380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of laser power, blood perfusion, thermal and optical properties of human liver tissue on thermal damage in LITT.
    Shibib KS; Munshid MA; Lateef HA
    Lasers Med Sci; 2017 Dec; 32(9):2039-2046. PubMed ID: 28894956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron fluence correction factors for conversion of dose in plastic to dose in water.
    Ding GX; Rogers DW; Cygler JE; Mackie TR
    Med Phys; 1997 Feb; 24(2):161-76. PubMed ID: 9048356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiance-based monitoring of the extent of tissue coagulation during laser interstitial thermal therapy.
    Chin LC; Wilson BC; Whelan WM; Vitkin IA
    Opt Lett; 2004 May; 29(9):959-61. PubMed ID: 15143640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams.
    Keijzer M; Jacques SL; Prahl SA; Welch AJ
    Lasers Surg Med; 1989; 9(2):148-54. PubMed ID: 2716459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods.
    Ash C; Dubec M; Donne K; Bashford T
    Lasers Med Sci; 2017 Nov; 32(8):1909-1918. PubMed ID: 28900751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron beam treatment verification using measured and Monte Carlo predicted portal images.
    Jarry G; Verhaegen F
    Phys Med Biol; 2005 Nov; 50(21):4977-94. PubMed ID: 16237235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A semi-analytical model for calculating the penetration depth of a high energy electron beam in a water phantom with a magnetic field.
    You S; Gou C; Wu Z; Hou Q
    Phys Med; 2015 Jul; 31(5):463-7. PubMed ID: 25964127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling and experimental verification for a broad beam light transport in optical tomography.
    Janunts E; Pöschinger T; Eisa F; Langenbucher A
    Z Med Phys; 2010; 20(4):277-86. PubMed ID: 20889320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.