These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 30043266)

  • 41. Comparative study of corneal tangent elastic modulus measurement using corneal indentation device.
    Ko MW; Leung LK; Lam DC
    Med Eng Phys; 2014 Sep; 36(9):1115-21. PubMed ID: 24984588
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of central corneal thickness measured with anterior segment optical coherence tomography versus ultrasonic pachymetry.
    Lázaro C; Hernández EM; Martínez D; Redondo P
    Arch Soc Esp Oftalmol; 2013 Feb; 88(2):45-9. PubMed ID: 23433191
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long-Term Biomechanical and Histologic Results of WST-D/NIR Corneal Stiffening in Rabbits, Up to 8 Months Follow-up.
    Brekelmans J; Goz A; Dickman MM; Brandis A; Sui X; Wagner HD; Nuijts RMMA; Scherz A; Marcovich AL
    Invest Ophthalmol Vis Sci; 2017 Aug; 58(10):4089-4095. PubMed ID: 28828480
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of diabetes mellitus on biomechanical properties of the rabbit cornea.
    Bao F; Deng M; Zheng X; Li L; Zhao Y; Cao S; Yu A; Wang Q; Huang J; Elsheikh A
    Exp Eye Res; 2017 Aug; 161():82-88. PubMed ID: 28603017
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measurement of corneal elasticity with an acoustic radiation force elasticity microscope.
    Mikula E; Hollman K; Chai D; Jester JV; Juhasz T
    Ultrasound Med Biol; 2014 Jul; 40(7):1671-9. PubMed ID: 24726798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Measurement of an Elasticity Map in the Human Cornea.
    Mikula ER; Jester JV; Juhasz T
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3282-6. PubMed ID: 27327584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chondroitin Sulfate-Based Biocompatible Crosslinker Restores Corneal Mechanics and Collagen Alignment.
    Wang X; Majumdar S; Ma G; Sohn J; Yiu SC; Stark W; Al-Qarni A; Edward DP; Elisseeff JH
    Invest Ophthalmol Vis Sci; 2017 Aug; 58(10):3887-3895. PubMed ID: 28763562
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Corneal elastic property investigated by terahertz technology.
    Ke L; Zhang L; Zhang N; Wu QYS; Leong HS; Abdelaziem A; Mehta JS; Liu YC
    Sci Rep; 2022 Nov; 12(1):19229. PubMed ID: 36357510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regional elastic performance of the human cornea.
    Hjortdal JO
    J Biomech; 1996 Jul; 29(7):931-42. PubMed ID: 8809623
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Corneal Hydration Control during Ex Vivo Experimentation Using Poloxamers.
    Clayson K; Sandwisch T; Ma Y; Pavlatos E; Pan X; Liu J
    Curr Eye Res; 2020 Feb; 45(2):111-117. PubMed ID: 31474157
    [No Abstract]   [Full Text] [Related]  

  • 51. Comparison of Corneal Riboflavin Gradients Using Dextran and HPMC Solutions.
    Ehmke T; Seiler TG; Fischinger I; Ripken T; Heisterkamp A; Frueh BE
    J Refract Surg; 2016 Dec; 32(12):798-802. PubMed ID: 27930789
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Treatment of alkali-injured cornea by cyclosporine A-loaded electrospun nanofibers - An alternative mode of therapy.
    Cejkova J; Cejka C; Trosan P; Zajicova A; Sykova E; Holan V
    Exp Eye Res; 2016 Jun; 147():128-137. PubMed ID: 27181227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of UVA-Riboflavin Corneal Cross-Linking Using Small Amplitude Oscillatory Shear Measurements.
    Aslanides IM; Dessi C; Georgoudis P; Charalambidis G; Vlassopoulos D; Coutsolelos AG; Kymionis G; Mukherjee A; Kitsopoulos TN
    Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):2240-5. PubMed ID: 27124315
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Corneal resistance to shear force after UVA-riboflavin cross-linking.
    Søndergaard AP; Ivarsen A; Hjortdal J
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):5059-69. PubMed ID: 23778880
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Time-varying regularity of changes in biomechanical properties of the corneas after removal of anterior corneal tissue.
    Zhang D; Qin X; Zhang H; Li L
    Biomed Eng Online; 2021 Nov; 20(1):113. PubMed ID: 34801040
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of UVA/Riboflavin Collagen Crosslinking on Biomechanics of Artificially Swollen Corneas.
    Hatami-Marbini H; Jayaram SM
    Invest Ophthalmol Vis Sci; 2018 Feb; 59(2):764-770. PubMed ID: 29392322
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Central corneal thickness measurements obtained with anterior segment spectral domain optical coherence tomography compared to ultrasound pachymetry in healthy subjects.
    Vollmer L; Sowka J; Pizzimenti J; Yu X
    Optometry; 2012 May; 83(5):167-72. PubMed ID: 23249119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation and hydration control of corneal tissue strips for experimental use.
    Borja D; Manns F; Lamar P; Rosen A; Fernandez V; Parel JM
    Cornea; 2004 Jan; 23(1):61-6. PubMed ID: 14701959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Noninvasive assessment of the hydration gradient across the cornea using confocal Raman spectroscopy.
    Bauer NJ; Wicksted JP; Jongsma FH; March WF; Hendrikse F; Motamedi M
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):831-5. PubMed ID: 9538892
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measurement of the Elastic Modulus of Cornea, Sclera and Limbus: The Importance of the Corneal-Limbus-Scleral Biomechanical Unit.
    Silver FH; Deshmukh T; Benedetto D; Gonzalez-Mercedes M; Mesica A
    Front Biosci (Schol Ed); 2022 Nov; 14(4):30. PubMed ID: 36575840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.