BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 30043348)

  • 1. Optimal strategies for bioremediation of nitrate-contaminated groundwater and microalgae biomass production.
    Rezvani F; Sarrafzadeh MH; Seo SH; Oh HM
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27471-27482. PubMed ID: 30043348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus optimization for simultaneous nitrate-contaminated groundwater treatment and algae biomass production using Ettlia sp.
    Rezvani F; Sarrafzadeh MH; Seo SH; Oh HM
    Bioresour Technol; 2017 Nov; 244(Pt 1):785-792. PubMed ID: 28822952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic Digestion Effluents (ADEs) Treatment Coupling with
    Zieliński M; Dębowski M; Szwaja S; Kisielewska M
    Water Environ Res; 2018 Feb; 90(2):155-163. PubMed ID: 28766484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen and phosphate removal from dairy processing side-streams by monocultures or consortium of microalgae.
    Kiani H; Azimi Y; Li Y; Mousavi M; Cara F; Mulcahy S; McDonnell H; Blanco A; Halim R
    J Biotechnol; 2023 Jan; 361():1-11. PubMed ID: 36410532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species.
    Su Y; Mennerich A; Urban B
    Bioresour Technol; 2012 Nov; 124():157-62. PubMed ID: 22995160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of culture conditions and comparison of biomass productivity of three green algae.
    Kim W; Park JM; Gim GH; Jeong SH; Kang CM; Kim DJ; Kim SW
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):19-27. PubMed ID: 21909669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of microalgal N and P composition on wastewater nutrient remediation.
    Whitton R; Le Mével A; Pidou M; Ometto F; Villa R; Jefferson B
    Water Res; 2016 Mar; 91():371-8. PubMed ID: 26854403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol.
    Gupta PL; Choi HJ; Lee SM
    Environ Sci Pollut Res Int; 2016 May; 23(10):10114-23. PubMed ID: 26867689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology.
    Wang X; Bao K; Cao W; Zhao Y; Hu CW
    Sci Rep; 2017 Jul; 7(1):5426. PubMed ID: 28710391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater.
    Gao F; Peng YY; Li C; Yang GJ; Deng YB; Xue B; Guo YM
    Sci Total Environ; 2018 Nov; 640-641():943-953. PubMed ID: 30021327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Nitrate Removal Capacity of Two Selected Eukaryotic Green Microalgae.
    Rani V; Maróti G
    Cells; 2021 Sep; 10(9):. PubMed ID: 34572139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgae Chlorella vulgaris and Scenedesmus dimorphus co-cultivation with landfill leachate for pollutant removal and lipid production.
    Hu D; Zhang J; Chu R; Yin Z; Hu J; Kristianto Nugroho Y; Li Z; Zhu L
    Bioresour Technol; 2021 Dec; 342():126003. PubMed ID: 34571333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of a freshwater microalgae and its application for the treatment of wastewater and obtaining fatty acids from tilapia cultivation.
    Morando-Grijalva CA; Vázquez-Larios AL; Alcántara-Hernández RJ; Ortega-Clemente LA; Robledo-Narváez PN
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28575-28584. PubMed ID: 32212076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring microalgal growth of Chlorella minutissima with a new all solid-state contact nitrate selective sensor.
    Balkanlı NE; Işıldak İ; İnan B; Özer T; Özçimen D
    Biotechnol Prog; 2022 May; 38(3):e3247. PubMed ID: 35202519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous carbon dioxide sequestration and nitrate removal by Chlorella vulgaris and Pseudomonas sp. consortium.
    Yu Q; Yin M; Chen Y; Liu S; Wang S; Li Y; Cui H; Yu D; Ge B; Huang F
    J Environ Manage; 2023 May; 333():117389. PubMed ID: 36758399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris.
    Ruiz J; Alvarez P; Arbib Z; Garrido C; Barragán J; Perales JA
    Int J Phytoremediation; 2011 Oct; 13(9):884-96. PubMed ID: 21972511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategic implementation of phosphorus repletion strategy in continuous two-stage cultivation of Chlorella sp. HS2: Evaluation for biofuel applications.
    Nayak M; Suh WI; Cho JM; Kim HS; Lee B; Chang YK
    J Environ Manage; 2020 Oct; 271():111041. PubMed ID: 32778320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and uptake kinetics of nitrate and phosphate by benthic microalgae for phytoremediation of eutrophic coastal sediments.
    Kwon HK; Oh SJ; Yang HS
    Bioresour Technol; 2013 Feb; 129():387-95. PubMed ID: 23262016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioremediation and biomass production of microalgae cultivation in river watercontaminated with pharmaceutical effluent.
    Singh A; Ummalyma SB; Sahoo D
    Bioresour Technol; 2020 Jul; 307():123233. PubMed ID: 32240927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris.
    Alketife AM; Judd S; Znad H
    Environ Technol; 2017 Jan; 38(1):94-102. PubMed ID: 27152999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.