These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30043374)

  • 1. Genome-Wide TSS Identification in Maize.
    Mejia-Guerra MK; Li W; Doseff AI; Grotewold E
    Methods Mol Biol; 2018; 1830():239-256. PubMed ID: 30043374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites.
    Mejía-Guerra MK; Li W; Galeano NF; Vidal M; Gray J; Doseff AI; Grotewold E
    Plant Cell; 2015 Dec; 27(12):3309-20. PubMed ID: 26628745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings.
    Jia J; Fu J; Zheng J; Zhou X; Huai J; Wang J; Wang M; Zhang Y; Chen X; Zhang J; Zhao J; Su Z; Lv Y; Wang G
    Plant J; 2006 Dec; 48(5):710-27. PubMed ID: 17076806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple and accurate transcriptional start site identification using Smar2C2 and examination of conserved promoter features.
    Murray A; Mendieta JP; Vollmers C; Schmitz RJ
    Plant J; 2022 Oct; 112(2):583-596. PubMed ID: 36030508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Prediction of Transcription Start Sites in Conifers.
    Bondar EI; Troukhan ME; Krutovsky KV; Tatarinova TV
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized reduced representation bisulfite sequencing reveals tissue-specific mCHH islands in maize.
    Hsu FM; Yen MR; Wang CT; Lin CY; Wang CR; Chen PY
    Epigenetics Chromatin; 2017 Aug; 10(1):42. PubMed ID: 28854962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide analysis of core promoter structures in Schizosaccharomyces pombe with DeepCAGE.
    Li H; Hou J; Bai L; Hu C; Tong P; Kang Y; Zhao X; Shao Z
    RNA Biol; 2015; 12(5):525-37. PubMed ID: 25747261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation.
    Čuklina J; Hahn J; Imakaev M; Omasits U; Förstner KU; Ljubimov N; Goebel M; Pessi G; Fischer HM; Ahrens CH; Gelfand MS; Evguenieva-Hackenberg E
    BMC Genomics; 2016 Apr; 17():302. PubMed ID: 27107716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification, classification, and analysis of two-component signal system genes in maize.
    Chu ZX; Ma Q; Lin YX; Tang XL; Zhou YQ; Zhu SW; Fan J; Cheng BJ
    Genet Mol Res; 2011 Dec; 10(4):3316-30. PubMed ID: 22194197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cap Analysis of Gene Expression (CAGE): A Quantitative and Genome-Wide Assay of Transcription Start Sites.
    Morioka MS; Kawaji H; Nishiyori-Sueki H; Murata M; Kojima-Ishiyama M; Carninci P; Itoh M
    Methods Mol Biol; 2020; 2120():277-301. PubMed ID: 32124327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan.
    Alkhateeb RS; Vorhölter FJ; Rückert C; Mentz A; Wibberg D; Hublik G; Niehaus K; Pühler A
    J Biotechnol; 2016 May; 225():18-28. PubMed ID: 26975844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription.
    Forestan C; Farinati S; Aiese Cigliano R; Lunardon A; Sanseverino W; Varotto S
    BMC Plant Biol; 2017 Oct; 17(1):161. PubMed ID: 29025411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Arabidopsis genic and non-genic promoters by paired-end sequencing of TSS tags.
    Tokizawa M; Kusunoki K; Koyama H; Kurotani A; Sakurai T; Suzuki Y; Sakamoto T; Kurata T; Yamamoto YY
    Plant J; 2017 May; 90(3):587-605. PubMed ID: 28214361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Epigenetic Regulation of Gene Transcription in Maize Seeds.
    Lu X; Wang W; Ren W; Chai Z; Guo W; Chen R; Wang L; Zhao J; Lang Z; Fan Y; Zhao J; Zhang C
    PLoS One; 2015; 10(10):e0139582. PubMed ID: 26469520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors.
    Yu CP; Chen SC; Chang YM; Liu WY; Lin HH; Lin JJ; Chen HJ; Lu YJ; Wu YH; Lu MY; Lu CH; Shih AC; Ku MS; Shiu SH; Wu SH; Li WH
    Proc Natl Acad Sci U S A; 2015 May; 112(19):E2477-86. PubMed ID: 25918418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly diversified molecular evolution of downstream transcription start sites in rice and Arabidopsis.
    Tanaka T; Koyanagi KO; Itoh T
    Plant Physiol; 2009 Mar; 149(3):1316-24. PubMed ID: 19118127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NanoCAGE-XL: An Approach to High-Confidence Transcription Start Site Sequencing.
    Ivanchenko MG; Megraw M
    Methods Mol Biol; 2018; 1830():225-237. PubMed ID: 30043373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana.
    Walther D; Brunnemann R; Selbig J
    PLoS Genet; 2007 Feb; 3(2):e11. PubMed ID: 17291162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kozak Sequence Acts as a Negative Regulator for De Novo Transcription Initiation of Newborn Coding Sequences in the Plant Genome.
    Hata T; Satoh S; Takada N; Matsuo M; Obokata J
    Mol Biol Evol; 2021 Jun; 38(7):2791-2803. PubMed ID: 33705557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global identification of transcription start sites in the genome of Apis mellifera using 5'LongSAGE.
    Zheng H; Sun L; Peng W; Shen Y; Wang Y; Xu B; Gu W; Chen S; Huang Z; Wang S
    J Exp Zool B Mol Dev Evol; 2011 Nov; 316(7):500-14. PubMed ID: 21695780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.