BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30044189)

  • 1. Spectroscopic studies on free radical coalescing antioxidants and brain protein cystatin.
    Amin F; Bano B
    J Biomol Struct Dyn; 2019 Jul; 37(11):2949-2959. PubMed ID: 30044189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage of cystatin due to ROS-generation and radical-scavenging activity of antioxidants and associated compounds.
    Amin F; Bano B
    Int J Biol Macromol; 2018 Nov; 119():369-379. PubMed ID: 30044956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress induced functional and structural modifications of high molecular mass goat brain cystatin.
    Sumbul S; Bano B
    Protein Pept Lett; 2008; 15(1):20-6. PubMed ID: 18221008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of cystatin imparted by riboflavin generated free radicals: Spectral analysis.
    Amin F; Khan W; Bano B
    Int J Biol Macromol; 2019 Mar; 124():1281-1291. PubMed ID: 30521904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radicals produced during the oxidation of hydrazines by hypochlorous acid.
    Goodwin DC; Aust SD; Grover TA
    Chem Res Toxicol; 1996 Dec; 9(8):1333-9. PubMed ID: 8951237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation.
    Hawkins CL; Davies MJ
    Biochem J; 1998 Jun; 332 ( Pt 3)(Pt 3):617-25. PubMed ID: 9620862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins: absolute rate constants, product analysis, and computational modeling.
    Pattison DI; Hawkins CL; Davies MJ
    Chem Res Toxicol; 2003 Apr; 16(4):439-49. PubMed ID: 12703960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells.
    Lloyd MM; Grima MA; Rayner BS; Hadfield KA; Davies MJ; Hawkins CL
    Free Radic Biol Med; 2013 Dec; 65():1352-1362. PubMed ID: 24120969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian cystatin and protagonists in brain diseases.
    Amin F; Khan MS; Bano B
    J Biomol Struct Dyn; 2020 Apr; 38(7):2171-2196. PubMed ID: 31107181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methionine sulfoxide and proteolytic cleavage contribute to the inactivation of cathepsin G by hypochlorous acid: an oxidative mechanism for regulation of serine proteinases by myeloperoxidase.
    Shao B; Belaaouaj A; Verlinde CL; Fu X; Heinecke JW
    J Biol Chem; 2005 Aug; 280(32):29311-21. PubMed ID: 15967795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenium-containing indolyl compounds: Kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins.
    Casaril AM; Ignasiak MT; Chuang CY; Vieira B; Padilha NB; Carroll L; Lenardão EJ; Savegnago L; Davies MJ
    Free Radic Biol Med; 2017 Dec; 113():395-405. PubMed ID: 29055824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometric analysis of HOCl- and free-radical-induced damage to lipids and proteins.
    Pitt AR; Spickett CM
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1077-82. PubMed ID: 18793192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of spiroiminodihydantoin nucleoside by reaction of 8-oxo-7,8-dihydro-2'-deoxyguanosine with hypochlorous acid or a myeloperoxidase-H(2)O(2)-Cl(-) system.
    Suzuki T; Masuda M; Friesen MD; Ohshima H
    Chem Res Toxicol; 2001 Sep; 14(9):1163-9. PubMed ID: 11559029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypochlorous acid as a precursor of free radicals in living systems.
    Panasenko OM; Gorudko IV; Sokolov AV
    Biochemistry (Mosc); 2013 Dec; 78(13):1466-89. PubMed ID: 24490735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ginsenoside Rb1 directly scavenges hydroxyl radical and hypochlorous acid.
    Lü JM; Weakley SM; Yang Z; Hu M; Yao Q; Chen C
    Curr Pharm Des; 2012; 18(38):6339-47. PubMed ID: 22974003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation.
    Hawkins CL; Davies MJ
    Biochem J; 1999 Jun; 340 ( Pt 2)(Pt 2):539-48. PubMed ID: 10333500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals.
    Regoli F; Winston GW
    Toxicol Appl Pharmacol; 1999 Apr; 156(2):96-105. PubMed ID: 10198274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypochlorous acid-mediated modification of proteins and its consequences.
    Hawkins CL
    Essays Biochem; 2020 Feb; 64(1):75-86. PubMed ID: 31867603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the effects of antioxidant non-steroidal anti-inflammatory drugs against myeloperoxidase and hypochlorous acid luminol-enhanced chemiluminescence.
    Pekoe G; Van Dyke K; Mengoli H; Peden D; English D
    Agents Actions; 1982 Apr; 12(1-2):232-8. PubMed ID: 6282074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypochlorite-induced oxidation of thiols: formation of thiyl radicals and the role of sulfenyl chlorides as intermediates.
    Davies MJ; Hawkins CL
    Free Radic Res; 2000 Dec; 33(6):719-29. PubMed ID: 11237094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.