BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 30044220)

  • 1. Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits.
    Panayi MC; Killcross S
    Elife; 2018 Jul; 7():. PubMed ID: 30044220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.
    Chudasama Y; Robbins TW
    J Neurosci; 2003 Sep; 23(25):8771-80. PubMed ID: 14507977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of orbitofrontal cortex lesions on autoshaped lever pressing and reversal learning.
    Chang SE
    Behav Brain Res; 2014 Oct; 273():52-6. PubMed ID: 25078291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifaceted Contributions by Different Regions of the Orbitofrontal and Medial Prefrontal Cortex to Probabilistic Reversal Learning.
    Dalton GL; Wang NY; Phillips AG; Floresco SB
    J Neurosci; 2016 Feb; 36(6):1996-2006. PubMed ID: 26865622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring action-dependent outcome representations depends on anterior but not posterior medial orbitofrontal cortex.
    Bradfield LA; Hart G; Balleine BW
    Neurobiol Learn Mem; 2018 Nov; 155():463-473. PubMed ID: 30243849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with 'disinhibition' of responding for previously unrewarded cues.
    Burke KA; Takahashi YK; Correll J; Brown PL; Schoenbaum G
    Eur J Neurosci; 2009 Nov; 30(10):1941-6. PubMed ID: 19912335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning.
    Ostlund SB; Balleine BW
    J Neurosci; 2007 May; 27(18):4819-25. PubMed ID: 17475789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations.
    Lichtenberg NT; Pennington ZT; Holley SM; Greenfield VY; Cepeda C; Levine MS; Wassum KM
    J Neurosci; 2017 Aug; 37(35):8374-8384. PubMed ID: 28743727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The basolateral amygdala-medial prefrontal cortex circuitry regulates behavioral flexibility during appetitive reversal learning.
    Keefer SE; Petrovich GD
    Behav Neurosci; 2020 Feb; 134(1):34-44. PubMed ID: 31829643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning.
    Ghods-Sharifi S; Haluk DM; Floresco SB
    Neurobiol Learn Mem; 2008 May; 89(4):567-73. PubMed ID: 18054257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Use of Predictive Cues beyond the Orbitofrontal Cortex: Role of the Submedius Thalamic Nucleus.
    Alcaraz F; Marchand AR; Vidal E; Guillou A; Faugère A; Coutureau E; Wolff M
    J Neurosci; 2015 Sep; 35(38):13183-93. PubMed ID: 26400947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orbitofrontal Cortex Signals Expected Outcomes with Predictive Codes When Stable Contingencies Promote the Integration of Reward History.
    Riceberg JS; Shapiro ML
    J Neurosci; 2017 Feb; 37(8):2010-2021. PubMed ID: 28115481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identity-Specific Reward Representations in Orbitofrontal Cortex Are Modulated by Selective Devaluation.
    Howard JD; Kahnt T
    J Neurosci; 2017 Mar; 37(10):2627-2638. PubMed ID: 28159906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of serotonin-specific and excitotoxic lesions of OFC on conditioned reinforcer devaluation and extinction in rats.
    West EA; Forcelli PA; McCue DL; Malkova L
    Behav Brain Res; 2013 Jun; 246():10-4. PubMed ID: 23458741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted Stimulation of Human Orbitofrontal Networks Disrupts Outcome-Guided Behavior.
    Howard JD; Reynolds R; Smith DE; Voss JL; Schoenbaum G; Kahnt T
    Curr Biol; 2020 Feb; 30(3):490-498.e4. PubMed ID: 31956033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medial Orbitofrontal Neurons Preferentially Signal Cues Predicting Changes in Reward during Unblocking.
    Lopatina N; McDannald MA; Styer CV; Peterson JF; Sadacca BF; Cheer JF; Schoenbaum G
    J Neurosci; 2016 Aug; 36(32):8416-24. PubMed ID: 27511013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-training inactivation of basolateral amygdala and mediodorsal thalamus, but not orbitofrontal cortex or prelimbic cortex, impairs devaluation in a multiple-response/multiple-reinforcer cued operant task.
    Fisher H; Pajser A; Pickens CL
    Behav Brain Res; 2020 Jan; 378():112159. PubMed ID: 31605743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep brain stimulation in the lateral orbitofrontal cortex impairs spatial reversal learning.
    Klanker M; Post G; Joosten R; Feenstra M; Denys D
    Behav Brain Res; 2013 May; 245():7-12. PubMed ID: 23396148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A thalamocortical circuit for updating action-outcome associations.
    Fresno V; Parkes SL; Faugère A; Coutureau E; Wolff M
    Elife; 2019 Apr; 8():. PubMed ID: 31012845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the orbitofrontal cortex in sensory-specific encoding of associations in pavlovian and instrumental conditioning.
    Delamater AR
    Ann N Y Acad Sci; 2007 Dec; 1121():152-73. PubMed ID: 17872387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.