These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 30044235)
1. Analyzing single-lead short ECG recordings using dense convolutional neural networks and feature-based post-processing to detect atrial fibrillation. Parvaneh S; Rubin J; Rahman A; Conroy B; Babaeizadeh S Physiol Meas; 2018 Aug; 39(8):084003. PubMed ID: 30044235 [TBL] [Abstract][Full Text] [Related]
2. Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings. Rubin J; Parvaneh S; Rahman A; Conroy B; Babaeizadeh S J Electrocardiol; 2018; 51(6S):S18-S21. PubMed ID: 30122456 [TBL] [Abstract][Full Text] [Related]
3. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG. Christov I; Krasteva V; Simova I; Neycheva T; Schmid R Physiol Meas; 2018 Sep; 39(9):094005. PubMed ID: 30102603 [TBL] [Abstract][Full Text] [Related]
4. A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms. Sodmann P; Vollmer M; Nath N; Kaderali L Physiol Meas; 2018 Oct; 39(10):104005. PubMed ID: 30235165 [TBL] [Abstract][Full Text] [Related]
5. Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG. Plesinger F; Nejedly P; Viscor I; Halamek J; Jurak P Physiol Meas; 2018 Sep; 39(9):094002. PubMed ID: 30102251 [TBL] [Abstract][Full Text] [Related]
6. A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Computing in Cardiology Challenge 2017. Kleyko D; Osipov E; Wiklund U Biomed Phys Eng Express; 2020 Feb; 6(2):025010. PubMed ID: 33438636 [TBL] [Abstract][Full Text] [Related]
7. Multiscaled Fusion of Deep Convolutional Neural Networks for Screening Atrial Fibrillation From Single Lead Short ECG Recordings. Fan X; Yao Q; Cai Y; Miao F; Sun F; Li Y IEEE J Biomed Health Inform; 2018 Nov; 22(6):1744-1753. PubMed ID: 30106699 [TBL] [Abstract][Full Text] [Related]
8. Detection of atrial fibrillation and other abnormal rhythms from ECG using a multi-layer classifier architecture. Mukherjee A; Dutta Choudhury A; Datta S; Puri C; Banerjee R; Singh R; Ukil A; Bandyopadhyay S; Pal A; Khandelwal S Physiol Meas; 2019 Jun; 40(5):054006. PubMed ID: 30650387 [TBL] [Abstract][Full Text] [Related]
9. A support vector machine approach for AF classification from a short single-lead ECG recording. Liu N; Sun M; Wang L; Zhou W; Dang H; Zhou X Physiol Meas; 2018 Jun; 39(6):064004. PubMed ID: 29794340 [TBL] [Abstract][Full Text] [Related]
10. Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection. Warrick PA; Nabhan Homsi M Physiol Meas; 2018 Oct; 39(11):114002. PubMed ID: 30010088 [TBL] [Abstract][Full Text] [Related]
11. Detecting atrial fibrillation from short single lead ECGs using statistical and morphological features. Athif M; Yasawardene PC; Daluwatte C Physiol Meas; 2018 Jun; 39(6):064002. PubMed ID: 29767635 [TBL] [Abstract][Full Text] [Related]
12. Assessing the Generalizability of a Deep Learning-based Automated Atrial Fibrillation Algorithm. Argha A; Li J; Magdy J; Alinejad-Rokny H; Celler BG; Butcher K; Ooi SY; Lovell NH Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38082750 [TBL] [Abstract][Full Text] [Related]
13. AF detection from ECG recordings using feature selection, sparse coding, and ensemble learning. Rizwan M; Whitaker BM; Anderson DV Physiol Meas; 2018 Dec; 39(12):124007. PubMed ID: 30524091 [TBL] [Abstract][Full Text] [Related]
14. Detection of atrial fibrillation from ECG recordings using decision tree ensemble with multi-level features. Shao M; Bin G; Wu S; Bin G; Huang J; Zhou Z Physiol Meas; 2018 Sep; 39(9):094008. PubMed ID: 30187894 [TBL] [Abstract][Full Text] [Related]
15. A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using single lead electrocardiograms of variable length. Kamaleswaran R; Mahajan R; Akbilgic O Physiol Meas; 2018 Mar; 39(3):035006. PubMed ID: 29369044 [TBL] [Abstract][Full Text] [Related]
16. Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network. Cai W; Chen Y; Guo J; Han B; Shi Y; Ji L; Wang J; Zhang G; Luo J Comput Biol Med; 2020 Jan; 116():103378. PubMed ID: 31778896 [TBL] [Abstract][Full Text] [Related]
17. Intrinsic Mode Function Complexity Index Using Empirical Mode Decomposition discriminates Normal Sinus Rhythm and Atrial Fibrillation on a Single Lead ECG. Shivaram S; Sundaram DSB; Balasubramani R; Muthyala A; Arunachalam SP Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5990-5993. PubMed ID: 30441701 [TBL] [Abstract][Full Text] [Related]
18. Atrial Fibrillation Detection in Short Single Lead ECG Recordings Using Wavelet Transform and Artificial Neural Networks. Hernandez F; Mendez D; Amado L; Altuve M Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5982-5985. PubMed ID: 30441699 [TBL] [Abstract][Full Text] [Related]
19. A low-complexity algorithm for detection of atrial fibrillation using an ECG. Sadr N; Jayawardhana M; Pham TT; Tang R; Balaei AT; de Chazal P Physiol Meas; 2018 Jun; 39(6):064003. PubMed ID: 29791322 [TBL] [Abstract][Full Text] [Related]
20. Atrial Fibrillation Detection with Low Signal-to-Noise Ratio Data Using Artificial Features and Abstract Features. Bao Z; Li D; Jiang S; Zhang L; Zhang Y J Healthc Eng; 2023; 2023():3269144. PubMed ID: 36718172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]