These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 30044235)
21. Atrioventricular Synchronization for Detection of Atrial Fibrillation and Flutter in One to Twelve ECG Leads Using a Dense Neural Network Classifier. Jekova I; Christov I; Krasteva V Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015834 [TBL] [Abstract][Full Text] [Related]
22. Non-Standardized Patch-Based ECG Lead Together With Deep Learning Based Algorithm for Automatic Screening of Atrial Fibrillation. Lai D; Bu Y; Su Y; Zhang X; Ma CS IEEE J Biomed Health Inform; 2020 Jun; 24(6):1569-1578. PubMed ID: 32175879 [TBL] [Abstract][Full Text] [Related]
23. Detecting atrial fibrillation by deep convolutional neural networks. Xia Y; Wulan N; Wang K; Zhang H Comput Biol Med; 2018 Feb; 93():84-92. PubMed ID: 29291535 [TBL] [Abstract][Full Text] [Related]
24. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Attia ZI; Noseworthy PA; Lopez-Jimenez F; Asirvatham SJ; Deshmukh AJ; Gersh BJ; Carter RE; Yao X; Rabinstein AA; Erickson BJ; Kapa S; Friedman PA Lancet; 2019 Sep; 394(10201):861-867. PubMed ID: 31378392 [TBL] [Abstract][Full Text] [Related]
25. Global hybrid multi-scale convolutional network for accurate and robust detection of atrial fibrillation using single-lead ECG recordings. Zhang P; Ma C; Sun Y; Fan G; Song F; Feng Y; Zhang G Comput Biol Med; 2021 Dec; 139():104880. PubMed ID: 34700255 [TBL] [Abstract][Full Text] [Related]
26. Abductive reasoning as a basis to reproduce expert criteria in ECG atrial fibrillation identification. Teijeiro T; García CA; Castro D; Félix P Physiol Meas; 2018 Aug; 39(8):084006. PubMed ID: 30074904 [TBL] [Abstract][Full Text] [Related]
27. Application of Dense Neural Networks for Detection of Atrial Fibrillation and Ranking of Augmented ECG Feature Set. Krasteva V; Christov I; Naydenov S; Stoyanov T; Jekova I Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696061 [TBL] [Abstract][Full Text] [Related]
28. A Deep Learning Method to Detect Atrial Fibrillation Based on Continuous Wavelet Transform. Wu Z; Feng X; Yang C Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1908-1912. PubMed ID: 31946271 [TBL] [Abstract][Full Text] [Related]
29. Multiclass Convolutional Neural Networks for Atrial Fibrillation Classification. Sbrollini A; Tomassini S; Emaldi E; Marcantoni I; Morettini M; Dragoni AF; Burattini L Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1288-1291. PubMed ID: 36086141 [TBL] [Abstract][Full Text] [Related]
30. ECG signal classification based on deep CNN and BiLSTM. Cheng J; Zou Q; Zhao Y BMC Med Inform Decis Mak; 2021 Dec; 21(1):365. PubMed ID: 34963455 [TBL] [Abstract][Full Text] [Related]
31. Identification of Atrial Fibrillation With Single-Lead Mobile ECG During Normal Sinus Rhythm Using Deep Learning. Kim J; Lee SJ; Ko B; Lee M; Lee YS; Lee KH J Korean Med Sci; 2024 Feb; 39(5):e56. PubMed ID: 38317452 [TBL] [Abstract][Full Text] [Related]
32. Cardiac anomaly detection based on time and frequency domain features using tree-based classifiers. Kropf M; Hayn D; Morris D; Radhakrishnan AK; Belyavskiy E; Frydas A; Pieske-Kraigher E; Pieske B; Schreier G Physiol Meas; 2018 Oct; 39(11):114001. PubMed ID: 30211688 [TBL] [Abstract][Full Text] [Related]
33. ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Xiong Z; Nash MP; Cheng E; Fedorov VV; Stiles MK; Zhao J Physiol Meas; 2018 Sep; 39(9):094006. PubMed ID: 30102248 [TBL] [Abstract][Full Text] [Related]
34. Learning Explainable Time-Morphology Patterns for Automatic Arrhythmia Classification from Short Single-Lead ECGs. Lee H; Shin M Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202805 [TBL] [Abstract][Full Text] [Related]
35. 12-lead ECG signal processing and atrial fibrillation prediction in clinical practice. Hsieh JC; Shih H; Xin LL; Yang CC; Han CL Technol Health Care; 2023; 31(2):417-433. PubMed ID: 36093717 [TBL] [Abstract][Full Text] [Related]
36. An SVM approach for identifying atrial fibrillation. Gliner V; Yaniv Y Physiol Meas; 2018 Sep; 39(9):094007. PubMed ID: 30187892 [TBL] [Abstract][Full Text] [Related]
37. Dual-Channel Neural Network for Atrial Fibrillation Detection From a Single Lead ECG Wave. Fang B; Chen J; Liu Y; Wang W; Wang K; Singh AK; Lv Z IEEE J Biomed Health Inform; 2023 May; 27(5):2296-2305. PubMed ID: 34665746 [TBL] [Abstract][Full Text] [Related]
38. Enhancing the detection of atrial fibrillation from wearable sensors with neural style transfer and convolutional recurrent networks. Xiong Z; Stiles MK; Gillis AM; Zhao J Comput Biol Med; 2022 Jul; 146():105551. PubMed ID: 35533458 [TBL] [Abstract][Full Text] [Related]
39. Assessing the accuracy of an automated atrial fibrillation detection algorithm using smartphone technology: The iREAD Study. William AD; Kanbour M; Callahan T; Bhargava M; Varma N; Rickard J; Saliba W; Wolski K; Hussein A; Lindsay BD; Wazni OM; Tarakji KG Heart Rhythm; 2018 Oct; 15(10):1561-1565. PubMed ID: 30143448 [TBL] [Abstract][Full Text] [Related]