BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30044451)

  • 1. Dual Graph Partitioning Highlights a Small Group of Pseudoknot-Containing RNA Submotifs.
    Jain S; Bayrak CS; Petingi L; Schlick T
    Genes (Basel); 2018 Jul; 9(8):. PubMed ID: 30044451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extended dual graph library and partitioning algorithm applicable to pseudoknotted RNA structures.
    Jain S; Saju S; Petingi L; Schlick T
    Methods; 2019 Jun; 162-163():74-84. PubMed ID: 30928508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partitioning and Classification of RNA Secondary Structures into Pseudonotted and Pseudoknot-free Regions Using a Graph-Theoretical Approach.
    Petingi L; Schlick T
    IAENG Int J Comput Sci; 2017; 44(2):241-246. PubMed ID: 30474081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-As-Graphs Motif Atlas-Dual Graph Library of RNA Modules and Viral Frameshifting-Element Applications.
    Zhu Q; Petingi L; Schlick T
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology.
    Kim N; Zheng Z; Elmetwaly S; Schlick T
    PLoS One; 2014; 9(9):e106074. PubMed ID: 25188578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel RNA design candidates by clustering the extended RNA-As-Graphs library.
    Jain S; Zhu Q; Paz ASP; Schlick T
    Biochim Biophys Acta Gen Subj; 2020 Jun; 1864(6):129534. PubMed ID: 31954797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse folding with RNA-As-Graphs produces a large pool of candidate sequences with target topologies.
    Jain S; Tao Y; Schlick T
    J Struct Biol; 2020 Mar; 209(3):107438. PubMed ID: 31874236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAG-3D: a search tool for RNA 3D substructures.
    Zahran M; Sevim Bayrak C; Elmetwaly S; Schlick T
    Nucleic Acids Res; 2015 Oct; 43(19):9474-88. PubMed ID: 26304547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly.
    Jain S; Schlick T
    J Mol Biol; 2017 Nov; 429(23):3587-3605. PubMed ID: 28988954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network Theory Tools for RNA Modeling.
    Kim N; Petingi L; Schlick T
    WSEAS Trans Math; 2013 Sep; 9(12):941-955. PubMed ID: 25414570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational prediction of riboswitch tertiary structures including pseudoknots by RAGTOP: a hierarchical graph sampling approach.
    Kim N; Zahran M; Schlick T
    Methods Enzymol; 2015; 553():115-35. PubMed ID: 25726463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design.
    Gan HH; Pasquali S; Schlick T
    Nucleic Acids Res; 2003 Jun; 31(11):2926-43. PubMed ID: 12771219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal RNAs.
    Pasquali S; Gan HH; Schlick T
    Nucleic Acids Res; 2005; 33(4):1384-98. PubMed ID: 15745998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and accurate search for non-coding RNA pseudoknot structures in genomes.
    Huang Z; Wu Y; Robertson J; Feng L; Malmberg RL; Cai L
    Bioinformatics; 2008 Oct; 24(20):2281-7. PubMed ID: 18687694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RiboFSM: frequent subgraph mining for the discovery of RNA structures and interactions.
    Gawronski AR; Turcotte M
    BMC Bioinformatics; 2014; 15 Suppl 13(Suppl 13):S2. PubMed ID: 25434643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RAG: RNA-As-Graphs database--concepts, analysis, and features.
    Gan HH; Fera D; Zorn J; Shiffeldrim N; Tang M; Laserson U; Kim N; Schlick T
    Bioinformatics; 2004 May; 20(8):1285-91. PubMed ID: 14962931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminative Feature Selection for Uncertain Graph Classification.
    Kong X; Yu PS; Wang X; Ragin AB
    Proc SIAM Int Conf Data Min; 2013; 2013():82-93. PubMed ID: 25949925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient algorithm for planar drawing of RNA structures with pseudoknots of any type.
    Byun Y; Han K
    J Bioinform Comput Biol; 2016 Jun; 14(3):1650009. PubMed ID: 26932273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Large RNA-Like Topologies by a Knowledge-Based Clustering Approach.
    Baba N; Elmetwaly S; Kim N; Schlick T
    J Mol Biol; 2016 Feb; 428(5 Pt A):811-821. PubMed ID: 26478223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DHPV: a distributed algorithm for large-scale graph partitioning.
    Adoni WYH; Nahhal T; Krichen M; El Byed A; Assayad I
    J Big Data; 2020; 7(1):76. PubMed ID: 32953386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.