BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 3004452)

  • 1. Intracellular localization of ATP:AMP phosphotransferase in Escherichia coli.
    Watanabe K; Fukumoto H; Isoi K
    Biochem Biophys Res Commun; 1986 Jan; 134(2):527-31. PubMed ID: 3004452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The binding of ATP and AMP to Escherichia coli adenylate kinase investigated by 1H and 15N NMR spectroscopy.
    Glushka J; Bârzu O; Sarfati RS; Kansal VK; Cowburn D
    Biochem Biophys Res Commun; 1990 Oct; 172(2):432-8. PubMed ID: 2241944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of adenylate kinase. Does adenosine 5'-triphosphate bind to the adenosine 5'-monophosphate site?
    Shyy YJ; Tian G; Tsai MD
    Biochemistry; 1987 Oct; 26(20):6411-5. PubMed ID: 2827727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for compartmentalized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle.
    Zeleznikar RJ; Heyman RA; Graeff RM; Walseth TF; Dawis SM; Butz EA; Goldberg ND
    J Biol Chem; 1990 Jan; 265(1):300-11. PubMed ID: 2152922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro ATP regeneration from polyphosphate and AMP by polyphosphate:AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A.
    Resnick SM; Zehnder AJ
    Appl Environ Microbiol; 2000 May; 66(5):2045-51. PubMed ID: 10788379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of bound adenosine triphosphate from bound adenosine diphosphate by the purified coupling factor 1 of chloroplasts. Evidence for direct involvement of the coupling factor in this "adenylate kinase-like" reaction.
    Moudrianakis EN; Tiefert MA
    J Biol Chem; 1976 Dec; 251(24):7796-801. PubMed ID: 12178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenine nucleotide degradation by the obligate intracellular bacterium Rickettsia typhi.
    Williams JC
    Infect Immun; 1980 Apr; 28(1):74-81. PubMed ID: 6247288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenylate energy charge in Escherichia coli CR341T28 and properties of heat-sensitive adenylate kinase.
    Glembotski CC; Chapman AG; Atkinson DE
    J Bacteriol; 1981 Mar; 145(3):1374-85. PubMed ID: 6259132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of AMP, ADP, and ATP in Escherichia coli W.
    Watanabe K; Tomioka S; Tanimura K; Oku H; Isoi K
    Biosci Biotechnol Biochem; 2011; 75(1):7-12. PubMed ID: 21228488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a mechanism of AMP-substrate inhibition in adenylate kinase from Escherichia coli.
    Sinev MA; Sineva EV; Ittah V; Haas E
    FEBS Lett; 1996 Nov; 397(2-3):273-6. PubMed ID: 8955362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-AMP phosphotransferase from Paracoccus denitrificans.
    Yeh SS; Tomasselli AG; Noda LH
    Eur J Biochem; 1983 Nov; 136(3):523-9. PubMed ID: 6315432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Associative mechanism for phosphoryl transfer: a molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates.
    Krishnamurthy H; Lou H; Kimple A; Vieille C; Cukier RI
    Proteins; 2005 Jan; 58(1):88-100. PubMed ID: 15521058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and catalytic role of arginine 88 in Escherichia coli adenylate kinase as evidenced by chemical modification and site-directed mutagenesis.
    Reinstein J; Gilles AM; Rose T; Wittinghofer A; Saint Girons I; Bârzu O; Surewicz WK; Mantsch HH
    J Biol Chem; 1989 May; 264(14):8107-12. PubMed ID: 2542263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of ADP/AMP complex of Escherichia coli adenylate kinase.
    Berry MB; Bae E; Bilderback TR; Glaser M; Phillips GN
    Proteins; 2006 Feb; 62(2):555-6. PubMed ID: 16302237
    [No Abstract]   [Full Text] [Related]  

  • 15. AMP metabolism in the marine bacterium Beneckea natriegens.
    Pickard MA; Whelihan JA; Knowles CJ
    Can J Microbiol; 1980 May; 26(5):633-6. PubMed ID: 6249477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of a new phosphoryl transfer system in nucleotide metabolism.
    Vannoni D; Leoncini R; Giglioni S; Niccolai N; Spiga O; Aceto E; Marinello E
    FEBS J; 2009 Jan; 276(1):271-85. PubMed ID: 19049516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenylate kinase of Escherichia coli: evidence for a functional interaction in phospholipid synthesis.
    Goelz SE; Cronan JE
    Biochemistry; 1982 Jan; 21(1):189-95. PubMed ID: 6277367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast adenylate kinase is active simultaneously in mitochondria and cytoplasm and is required for non-fermentative growth.
    Bandlow W; Strobel G; Zoglowek C; Oechsner U; Magdolen V
    Eur J Biochem; 1988 Dec; 178(2):451-7. PubMed ID: 2850178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and accumulation of thiamin triphosphate in Escherichia coli cells expressing chicken cytosolic adenylate kinase.
    Shioda T; Egi Y; Yamada K; Yamada M; Nakazawa A; Kawasaki T
    Biochim Biophys Acta; 1991 Nov; 1115(1):36-41. PubMed ID: 1958703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic polyphosphate kinase and adenylate kinase participate in the polyphosphate:AMP phosphotransferase activity of Escherichia coli.
    Ishige K; Noguchi T
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14168-71. PubMed ID: 11106368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.