BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 30044544)

  • 1. Form and functional repair of long bone using 3D-printed bioactive scaffolds.
    Tovar N; Witek L; Atria P; Sobieraj M; Bowers M; Lopez CD; Cronstein BN; Coelho PG
    J Tissue Eng Regen Med; 2018 Sep; 12(9):1986-1999. PubMed ID: 30044544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repair of Critical-Sized Long Bone Defects Using Dipyridamole-Augmented 3D-Printed Bioactive Ceramic Scaffolds.
    Witek L; Alifarag AM; Tovar N; Lopez CD; Cronstein BN; Rodriguez ED; Coelho PG
    J Orthop Res; 2019 Dec; 37(12):2499-2507. PubMed ID: 31334868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional gene therapy with 3D printed scaffolds to heal critical sized bone defects in a rat model.
    Alluri R; Song X; Bougioukli S; Pannell W; Vakhshori V; Sugiyama O; Tang A; Park SH; Chen Y; Lieberman JR
    J Biomed Mater Res A; 2019 Oct; 107(10):2174-2182. PubMed ID: 31112357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin.
    Song Y; Lin K; He S; Wang C; Zhang S; Li D; Wang J; Cao T; Bi L; Pei G
    Int J Nanomedicine; 2018; 13():505-523. PubMed ID: 29416332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects.
    Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC
    Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of different HA/β-TCP coated 3D printed bioceramic scaffolds on repairing large bone defects in rabbits.
    Wen J; Song M; Zeng Y; Dong X
    J Orthop Surg (Hong Kong); 2023; 31(3):10225536231222121. PubMed ID: 38118163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.
    Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of rabbit radial bone defects using bone morphogenetic protein-2 combined with 3D porous silk fibroin/β-tricalcium phosphate hybrid scaffolds.
    Song J; Kim J; Woo HM; Yoon B; Park H; Park C; Kang BJ
    J Biomater Sci Polym Ed; 2018 Apr; 29(6):716-729. PubMed ID: 29405844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering 3D Printed Bioceramic Scaffolds to Reconstruct Critical-Sized Calvaria Defects in a Skeletally Immature Pig Model.
    DeMitchell-Rodriguez EM; Shen C; Nayak VV; Tovar N; Witek L; Torroni A; Yarholar LM; Cronstein BN; Flores RL; Coelho PG
    Plast Reconstr Surg; 2023 Aug; 152(2):270e-280e. PubMed ID: 36723712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defects.
    Lopez CD; Diaz-Siso JR; Witek L; Bekisz JM; Cronstein BN; Torroni A; Flores RL; Rodriguez ED; Coelho PG
    J Surg Res; 2018 Mar; 223():115-122. PubMed ID: 29433862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-printed, bioactive ceramic scaffold with rhBMP-2 in treating critical femoral bone defects in rabbits using the induced membrane technique.
    Cho JW; Kim BS; Yeo DH; Lim EJ; Sakong S; Lim J; Park S; Jeong YH; Jung TG; Choi H; Oh CW; Kim HJ; Park JW; Oh JK
    J Orthop Res; 2021 Dec; 39(12):2671-2680. PubMed ID: 33580542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds.
    Roohani-Esfahani SI; Dunstan CR; Davies B; Pearce S; Williams R; Zreiqat H
    Acta Biomater; 2012 Nov; 8(11):4162-72. PubMed ID: 22842031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dipyridamole Augments Three-Dimensionally Printed Bioactive Ceramic Scaffolds to Regenerate Craniofacial Bone.
    Lopez CD; Diaz-Siso JR; Witek L; Bekisz JM; Gil LF; Cronstein BN; Flores RL; Torroni A; Rodriguez ED; Coelho PG
    Plast Reconstr Surg; 2019 May; 143(5):1408-1419. PubMed ID: 31033822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.