These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30044604)

  • 1. Enhancing Coupled Enzymatic Activity by Colocalization on Nanoparticle Surfaces: Kinetic Evidence for Directed Channeling of Intermediates.
    Vranish JN; Ancona MG; Oh E; Susumu K; Lasarte Aragonés G; Breger JC; Walper SA; Medintz IL
    ACS Nano; 2018 Aug; 12(8):7911-7926. PubMed ID: 30044604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the conversion of phosphoenolpyruvate to lactate by enzymatic channeling with mixed nanoparticle display.
    Hooe SL; Green CM; Susumu K; Stewart MH; Breger JC; Medintz IL
    Cell Rep Methods; 2024 May; 4(5):100764. PubMed ID: 38714198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme assembly on nanoparticle scaffolds enhances cofactor recycling and improves coupled reaction kinetics.
    Breger JC; Goldman ER; Susumu K; Oh E; Green CM; Hooe SL; Thakur M; Medintz IL; Ellis GA
    Nanoscale; 2023 Jun; 15(23):10159-10175. PubMed ID: 37272342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding How Nanoparticle Attachment Enhances Phosphotriesterase Kinetic Efficiency.
    Breger JC; Ancona MG; Walper SA; Oh E; Susumu K; Stewart MH; Deschamps JR; Medintz IL
    ACS Nano; 2015 Aug; 9(8):8491-503. PubMed ID: 26230391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing coupled enzymatic activity by conjugating one enzyme to a nanoparticle.
    Vranish JN; Ancona MG; Oh E; Susumu K; Medintz IL
    Nanoscale; 2017 Apr; 9(16):5172-5187. PubMed ID: 28393943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self assembling nanoparticle enzyme clusters provide access to substrate channeling in multienzymatic cascades.
    Breger JC; Vranish JN; Oh E; Stewart MH; Susumu K; Lasarte-Aragonés G; Ellis GA; Walper SA; Díaz SA; Hooe SL; Klein WP; Thakur M; Ancona MG; Medintz IL
    Nat Commun; 2023 Mar; 14(1):1757. PubMed ID: 36990995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring Enzymatic Proteolysis Using Either Enzyme- or Substrate-Bioconjugated Quantum Dots.
    Díaz SA; Breger JC; Medintz IL
    Methods Enzymol; 2016; 571():19-54. PubMed ID: 27112393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing the activity of immobilized enzymes with nanoparticle conjugation.
    Ding S; Cargill AA; Medintz IL; Claussen JC
    Curr Opin Biotechnol; 2015 Aug; 34():242-50. PubMed ID: 25957941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle Size Influences Localized Enzymatic Enhancement-A Case Study with Phosphotriesterase.
    Breger JC; Oh E; Susumu K; Klein WP; Walper SA; Ancona MG; Medintz IL
    Bioconjug Chem; 2019 Jul; 30(7):2060-2074. PubMed ID: 31283212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementing Multi-Enzyme Biocatalytic Systems Using Nanoparticle Scaffolds.
    Breger JC; Ellis GA; Walper SA; Susumu K; Medintz IL
    Methods Mol Biol; 2022; 2487():227-262. PubMed ID: 35687240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bienzymatic Sequential Reaction on Microgel Particles and Their Cofactor Dependent Applications.
    Dubey NC; Tripathi BP; Müller M; Stamm M; Ionov L
    Biomacromolecules; 2016 May; 17(5):1610-20. PubMed ID: 27010819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of Dehydrogenase Enzymes with Nanoparticles in Industrial and Medical Applications, and the Associated Challenges: A Mini-review.
    Porzani SJ; Lorenzi AS; Eghtedari M; Nowruzi B
    Mini Rev Med Chem; 2021; 21(11):1351-1366. PubMed ID: 33213343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating Surface Ligand-Dependent Kinetic Enhancement of Proteolytic Activity at Surface-Modified Quantum Dots.
    Díaz SA; Sen S; Boeneman Gemmill K; Brown CW; Oh E; Susumu K; Stewart MH; Breger JC; Lasarte Aragonés G; Field LD; Deschamps JR; Král P; Medintz IL
    ACS Nano; 2017 Jun; 11(6):5884-5896. PubMed ID: 28603969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic enhancement in high-activity enzyme complexes attached to nanoparticles.
    Malanoski AP; Breger JC; Brown CW; Deschamps JR; Susumu K; Oh E; Anderson GP; Walper SA; Medintz IL
    Nanoscale Horiz; 2017 Sep; 2(5):241-252. PubMed ID: 32260679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of proteolytic activity associated with selection of thiol ligand coatings on quantum dots.
    Wu M; Algar WR
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2535-45. PubMed ID: 25607728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies.
    Vranish JN; Ancona MG; Walper SA; Medintz IL
    Langmuir; 2018 Mar; 34(9):2901-2925. PubMed ID: 29115133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the Catalytic and Optical Properties of Aggregated Nanoparticles or Semiconductor Quantum Dots Using DNA-Based Constitutional Dynamic Networks.
    Zhou Z; Liu X; Yue L; Willner I
    ACS Nano; 2018 Nov; 12(11):10725-10735. PubMed ID: 30256615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Multistep Reactions: Biomimetic Design of Substrate Channeling Using P22 Virus-Like Particles.
    Wang Y; Selivanovitch E; Douglas T
    Adv Sci (Weinh); 2023 May; 10(13):e2206906. PubMed ID: 36815387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microenvironmental effects can masquerade as substrate channelling in cascade biocatalysis.
    Abdallah W; Hong X; Banta S; Wheeldon I
    Curr Opin Biotechnol; 2022 Feb; 73():233-239. PubMed ID: 34521036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cascade biocatalysis by multienzyme-nanoparticle assemblies.
    Kang W; Liu J; Wang J; Nie Y; Guo Z; Xia J
    Bioconjug Chem; 2014 Aug; 25(8):1387-94. PubMed ID: 25020147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.