BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30044676)

  • 1. Shape synthesis of an assistive knee exoskeleton device to support knee joint and rehabilitate gait.
    Singh R; Chaudhary H; Singh AK
    Disabil Rehabil Assist Technol; 2019 Jul; 14(5):462-470. PubMed ID: 30044676
    [No Abstract]   [Full Text] [Related]  

  • 2. A novel gait-based synthesis procedure for the design of 4-bar exoskeleton with natural trajectories.
    Singh R; Chaudhary H; Singh AK
    J Orthop Translat; 2018 Jan; 12():6-15. PubMed ID: 29662774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness.
    de Miguel-Fernández J; Lobo-Prat J; Prinsen E; Font-Llagunes JM; Marchal-Crespo L
    J Neuroeng Rehabil; 2023 Feb; 20(1):23. PubMed ID: 36805777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assistive Mobility Control of a Robotic Hip-Knee Exoskeleton for Gait Training.
    Changcheng C; Li YR; Chen CT
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive Exoskeleton with Gait-Based Knee Joint Support for Individuals with Cerebral Palsy.
    Kennard M; Kadone H; Shimizu Y; Suzuki K
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 12. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Crutch Gait Pattern on Shoulder Reaction Force when Walking with Lower Limb Exoskeletons.
    Chen X; Cheng X; Fong J; Oetomo D; Tan Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7574-7577. PubMed ID: 34892843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A four-bar knee joint measurement walking system for prosthesis design.
    Zhang Y; Cao W; Yu H; Meng Q; Lv J
    Technol Health Care; 2021; 29(4):823-828. PubMed ID: 33492256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Unified Gait Phase Estimation and Control of Exoskeleton using Virtual Energy Regulator (VER).
    Nasiri R; Dinovitzer H; Arami A
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assistive lower limb exoskeleton for people with neurological gait disorders.
    Ortlieb A; Bouri M; Baud R; Bleuler H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():441-446. PubMed ID: 28813859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review.
    Fisahn C; Aach M; Jansen O; Moisi M; Mayadev A; Pagarigan KT; Dettori JR; Schildhauer TA
    Global Spine J; 2016 Dec; 6(8):822-841. PubMed ID: 27853668
    [No Abstract]   [Full Text] [Related]  

  • 18. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X; Wang KY; Yang ZY
    Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ergonomic dual four-bar linkage knee exoskeleton for stair ascent assistance.
    Kittisares S; Ide T; Nabae H; Suzumori K
    Front Robot AI; 2023; 10():1285520. PubMed ID: 38124902
    [No Abstract]   [Full Text] [Related]  

  • 20. Altering gait variability with an ankle exoskeleton.
    Antonellis P; Galle S; De Clercq D; Malcolm P
    PLoS One; 2018; 13(10):e0205088. PubMed ID: 30356309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.