These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30044676)

  • 21. Design and Evaluation of a Knee Flexion Assistance Exoskeleton for People with Transtibial Amputation.
    Anderson AJ; Hudak YF; Gauthier KA; Muir BC; Aubin PM
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.
    Ashkani O; Maleki A; Jamshidi N
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):137-144. PubMed ID: 27896688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Human Lower Limb Mechanical Phantom for the Testing of Knee Exoskeletons.
    Barrutia WS; Bratt J; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2497-2506. PubMed ID: 37186529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preliminary Assessment of a Compliant Gait Exoskeleton.
    Cestari M; Sanz-Merodio D; Garcia E
    Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validating Model-Based Prediction Of Biological Knee Moment During Walking With An Exoskeleton in Crouch Gait: Potential Application for Exoskeleton Control.
    Chen J; Damiano DL; Lerner ZF; Bulea TC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():778-783. PubMed ID: 31374725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Study on the influence of wearable lower limb exoskeleton on gait characteristics].
    Zhang J; Cai Y; Liu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):785-794. PubMed ID: 31631627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How Much Clinical and Functional Impairment do Children Treated With Knee Rotationplasty Experience in Adulthood?
    Benedetti MG; Okita Y; Recubini E; Mariani E; Leardini A; Manfrini M
    Clin Orthop Relat Res; 2016 Apr; 474(4):995-1004. PubMed ID: 26754115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke.
    Murray SA; Ha KH; Hartigan C; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):441-9. PubMed ID: 25134084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait.
    Tucker MR; Shirota C; Lambercy O; Sulzer JS; Gassert R
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2331-2343. PubMed ID: 28113200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Custom sizing of lower limb exoskeleton actuators using gait dynamic modelling of children with cerebral palsy.
    Samadi B; Achiche S; Parent A; Ballaz L; Chouinard U; Raison M
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1519-24. PubMed ID: 26980164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Anthropometrically Parameterized Assistive Lower Limb Exoskeleton.
    Laubscher CA; Farris RJ; van den Bogert AJ; Sawicki JT
    J Biomech Eng; 2021 Oct; 143(10):. PubMed ID: 34008845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human.
    Barbareschi G; Richards R; Thornton M; Carlson T; Holloway C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6728-31. PubMed ID: 26737837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of Exoskeleton Alignment and its Effect on the Knee Extensor and Flexor Muscles.
    MajidiRad A; Yihun Y; Desai J; Hakansson NA
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4093-4096. PubMed ID: 31946771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rethinking Exoskeleton Simulation-Based Design: The Effect of Using Different Cost Functions.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2153-2164. PubMed ID: 38833397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinematic effects of inertia and friction added by a robotic knee exoskeleton after prolonged walking.
    Shirota C; Tucker MR; Lambercy O; Gassert R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():430-434. PubMed ID: 28813857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of Varied Load Assistance with Exoskeleton-Type Robotic Device on Gait Rehabilitation in Healthy Adult Men.
    Tanaka T; Matsumura R; Miura T
    Int J Environ Res Public Health; 2022 Aug; 19(15):. PubMed ID: 35955068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing Knee Hyperextension With an Exoskeleton in Children and Adolescents With Genu Recurvatum: A Feasibility Study.
    Lee D; Shepherd MK; Mulrine SC; Schneider JD; Moore KF; Eggebrecht EM; Rogozinski BM; Herrin KR; Young AJ
    IEEE Trans Biomed Eng; 2023 Dec; 70(12):3312-3320. PubMed ID: 37262114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and Control of an Adaptive Knee Joint Exoskeleton Mechanism with Buffering Function.
    Wang Y; Zhang W; Shi D; Geng Y
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.