BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 30044677)

  • 1. Motoneuron output regulated by ionic channels: a modeling study of motoneuron frequency-current relationships during fictive locomotion.
    Dai Y; Cheng Y; Fedirchuk B; Jordan LM; Chu J
    J Neurophysiol; 2018 Oct; 120(4):1840-1858. PubMed ID: 30044677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modeling study of spinal motoneuron recruitment regulated by ionic channels during fictive locomotion.
    Zhang Q; Dai Y
    J Comput Neurosci; 2020 Nov; 48(4):409-428. PubMed ID: 32895895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modelling study of locomotion-induced hyperpolarization of voltage threshold in cat lumbar motoneurones.
    Dai Y; Jones KE; Fedirchuk B; McCrea DA; Jordan LM
    J Physiol; 2002 Oct; 544(2):521-36. PubMed ID: 12381824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of the localization of dendritic calcium persistent inward current on the input-output properties of spinal motoneuron pool: a computational study.
    Kim H
    J Appl Physiol (1985); 2017 Nov; 123(5):1166-1187. PubMed ID: 28684585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor Pattern and Force Generation Modulated by Ionic Channels: A Computational Study of Spinal Networks Underlying Locomotion.
    Zhang Q; Cheng Y; Zhou M; Dai Y
    Front Comput Neurosci; 2022; 16():809599. PubMed ID: 35493855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motoneuron input-resistance changes during fictive locomotion produced by stimulation of the mesencephalic locomotor region.
    Shefchyk SJ; Jordan LM
    J Neurophysiol; 1985 Nov; 54(5):1101-8. PubMed ID: 4078609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonreciprocal mechanisms in up- and downregulation of spinal motoneuron excitability by modulators of KCNQ/Kv7 channels.
    Lombardo J; Harrington MA
    J Neurophysiol; 2016 Nov; 116(5):2114-2124. PubMed ID: 27512022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat.
    Degtyarenko AM; Simon ES; Norden-Krichmar T; Burke RE
    J Neurophysiol; 1998 Jan; 79(1):447-63. PubMed ID: 9425213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. M-type potassium currents differentially affect activation of motoneuron subtypes and tune recruitment gain.
    Sharples SA; Broadhead MJ; Gray JA; Miles GB
    J Physiol; 2023 Dec; 601(24):5751-5775. PubMed ID: 37988235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A variable-threshold motoneuron model that incorporates time- and voltage-dependent potassium and calcium conductances.
    Powers RK
    J Neurophysiol; 1993 Jul; 70(1):246-62. PubMed ID: 8395578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic and Axonal L-Type Calcium Channels Cooperate to Enhance Motoneuron Firing Output during
    Kadas D; Klein A; Krick N; Worrell JW; Ryglewski S; Duch C
    J Neurosci; 2017 Nov; 37(45):10971-10982. PubMed ID: 28986465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evaluation of input-output models of motoneuron discharge.
    Powers RK; Binder MD
    J Neurophysiol; 1996 Jan; 75(1):367-79. PubMed ID: 8822564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion.
    Pratt CA; Jordan LM
    J Neurophysiol; 1987 Jan; 57(1):56-71. PubMed ID: 3559681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in electrophysiological properties of lamprey spinal motoneurons during fictive swimming.
    Martin MM
    J Neurophysiol; 2002 Nov; 88(5):2463-76. PubMed ID: 12424286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole cell recordings of lumbar motoneurons during locomotor-like activity in the in vitro neonatal rat spinal cord.
    Hochman S; Schmidt BJ
    J Neurophysiol; 1998 Feb; 79(2):743-52. PubMed ID: 9463437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-sensitive calcium currents and their role in regulating phrenic motoneuron electrical excitability during the perinatal period.
    Martin-Caraballo M; Greer JJ
    J Neurobiol; 2001 Mar; 46(4):231-48. PubMed ID: 11180152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic distributions of L-type Ca
    Mousa MH; Elbasiouny SM
    J Neurophysiol; 2020 Oct; 124(4):1285-1307. PubMed ID: 32937080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations between neurograms and locomotor drive potentials in motoneurons during fictive locomotion: implications for the organization of locomotor commands.
    Hamm TM; Trank TV; Turkin VV
    Prog Brain Res; 1999; 123():331-9. PubMed ID: 10635728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phasic modulation of short latency cutaneous excitation in flexor digitorum longus motoneurons during fictive locomotion.
    Schmidt BJ; Meyers DE; Fleshman JW; Tokuriki M; Burke RE
    Exp Brain Res; 1988; 71(3):568-78. PubMed ID: 3416970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of short latency cutaneous excitation in flexor and extensor motoneurons during fictive locomotion in the cat.
    Schmidt BJ; Meyers DE; Tokuriki M; Burke RE
    Exp Brain Res; 1989; 77(1):57-68. PubMed ID: 2792270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.