These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30044760)

  • 1. An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases.
    Arutyunova E; Jiang Z; Yang J; Kulepa AN; Young HS; Verhelst S; O'Donoghue AJ; Lemieux MJ
    Biol Chem; 2018 Nov; 399(12):1389-1397. PubMed ID: 30044760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allosteric regulation of rhomboid intramembrane proteolysis.
    Arutyunova E; Panwar P; Skiba PM; Gale N; Mak MW; Lemieux MJ
    EMBO J; 2014 Sep; 33(17):1869-81. PubMed ID: 25009246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligomeric state study of prokaryotic rhomboid proteases.
    Sampathkumar P; Mak MW; Fischer-Witholt SJ; Guigard E; Kay CM; Lemieux MJ
    Biochim Biophys Acta; 2012 Dec; 1818(12):3090-7. PubMed ID: 22921757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Recombinant Rhomboid Proteases.
    Arutyunova E; Panigrahi R; Strisovsky K; Lemieux MJ
    Methods Enzymol; 2017; 584():255-278. PubMed ID: 28065266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Untangling structure-function relationships in the rhomboid family of intramembrane proteases.
    Brooks CL; Lemieux MJ
    Biochim Biophys Acta; 2013 Dec; 1828(12):2862-72. PubMed ID: 24099005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural comparison of substrate entry gate for rhomboid intramembrane peptidases.
    Lazareno-Saez C; Brooks CL; Lemieux MJ
    Biochem Cell Biol; 2011 Apr; 89(2):216-23. PubMed ID: 21455272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate.
    Baker RP; Young K; Feng L; Shi Y; Urban S
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8257-62. PubMed ID: 17463085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Unfolding of Rhomboid Intramembrane Proteases.
    Panigrahi R; Arutyunova E; Panwar P; Gimpl K; Keller S; Lemieux MJ
    Biophys J; 2016 Mar; 110(6):1379-90. PubMed ID: 27028647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures.
    Zoll S; Stanchev S; Began J; Skerle J; Lepšík M; Peclinovská L; Majer P; Strisovsky K
    EMBO J; 2014 Oct; 33(20):2408-21. PubMed ID: 25216680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis.
    Lemieux MJ; Fischer SJ; Cherney MM; Bateman KS; James MN
    Proc Natl Acad Sci U S A; 2007 Jan; 104(3):750-4. PubMed ID: 17210913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive Versatile Fluorogenic Transmembrane Peptide Substrates for Rhomboid Intramembrane Proteases.
    Tichá A; Stanchev S; Škerle J; Began J; Ingr M; Švehlová K; Polovinkin L; Růžička M; Bednárová L; Hadravová R; Poláchová E; Rampírová P; Březinová J; Kašička V; Majer P; Strisovsky K
    J Biol Chem; 2017 Feb; 292(7):2703-2713. PubMed ID: 28069810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity Assays for Rhomboid Proteases.
    Arutyunova E; Strisovsky K; Lemieux MJ
    Methods Enzymol; 2017; 584():395-437. PubMed ID: 28065272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.
    Panigrahi R; Lemieux MJ
    Adv Exp Med Biol; 2015; 883():107-17. PubMed ID: 26621464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and Purification of Haemophilus influenzae Rhomboid Intramembrane Protease GlpG for Structural Studies.
    Panwar P; Lemieux MJ
    Curr Protoc Protein Sci; 2014 Apr; 76():29.9.1-29.9.25. PubMed ID: 24692018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intramembrane active site of GlpG, an E. coli rhomboid protease, is accessible to water and hydrolyses an extramembrane peptide bond of substrates.
    Maegawa S; Koide K; Ito K; Akiyama Y
    Mol Microbiol; 2007 Apr; 64(2):435-47. PubMed ID: 17493126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease.
    Lazareno-Saez C; Arutyunova E; Coquelle N; Lemieux MJ
    J Mol Biol; 2013 Apr; 425(7):1127-42. PubMed ID: 23353827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease.
    Xue Y; Ha Y
    J Biol Chem; 2013 Jun; 288(23):16645-16654. PubMed ID: 23609444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors.
    Goel P; Jumpertz T; Tichá A; Ogorek I; Mikles DC; Hubalek M; Pietrzik CU; Strisovsky K; Schmidt B; Weggen S
    Bioorg Med Chem Lett; 2018 May; 28(8):1417-1422. PubMed ID: 29463448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis.
    Cho S; Dickey SW; Urban S
    Mol Cell; 2016 Feb; 61(3):329-340. PubMed ID: 26805573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of rhomboid protease in a lipid environment.
    Vinothkumar KR
    J Mol Biol; 2011 Mar; 407(2):232-47. PubMed ID: 21256137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.