BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 30044776)

  • 1. Susceptibility of influenza viruses to hypothiocyanite and hypoiodite produced by lactoperoxidase in a cell-free system.
    Patel U; Gingerich A; Widman L; Sarr D; Tripp RA; Rada B
    PLoS One; 2018; 13(7):e0199167. PubMed ID: 30044776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antiviral activity of hypothiocyanite produced by lactoperoxidase against influenza A and B viruses and mode of its antiviral action.
    Sugita C; Shin K; Wakabayashi H; Tsuhako R; Yoshida H; Watanabe W; Kurokawa M
    Acta Virol; 2018; 62(4):401-408. PubMed ID: 30472870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro antiviral activity of hypothiocyanite against A/H1N1/2009 pandemic influenza virus.
    Cegolon L; Salata C; Piccoli E; Juarez V; Palu' G; Mastrangelo G; Calistri A
    Int J Hyg Environ Health; 2014 Jan; 217(1):17-22. PubMed ID: 23540488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of respiratory mucosal antiviral defenses by the oxidation of iodide.
    Fischer AJ; Lennemann NJ; Krishnamurthy S; Pócza P; Durairaj L; Launspach JL; Rhein BA; Wohlford-Lenane C; Lorentzen D; Bánfi B; McCray PB
    Am J Respir Cell Mol Biol; 2011 Oct; 45(4):874-81. PubMed ID: 21441383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro neuraminidase inhibitory activity of four neuraminidase inhibitors against influenza virus isolates in the 2011-2012 season in Japan.
    Ikematsu H; Kawai N; Iwaki N; Kashiwagi S
    J Infect Chemother; 2014 Feb; 20(2):77-80. PubMed ID: 24560563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus.
    Gingerich A; Pang L; Hanson J; Dlugolenski D; Streich R; Lafontaine ER; Nagy T; Tripp RA; Rada B
    Inflamm Res; 2016 Jan; 65(1):71-80. PubMed ID: 26608498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide.
    Tilmanis D; van Baalen C; Oh DY; Rossignol JF; Hurt AC
    Antiviral Res; 2017 Nov; 147():142-148. PubMed ID: 28986103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Characterization of Novel Compounds with Broad-Spectrum Antiviral Activity against Influenza A and B Viruses.
    Park JG; Ávila-Pérez G; Nogales A; Blanco-Lobo P; de la Torre JC; Martínez-Sobrido L
    J Virol; 2020 Mar; 94(7):. PubMed ID: 31941776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Antiviral effect of «Kagocel» substance in vitro on influenza viruses H1N1, H1N1pdm09 and H3N2.].
    Fediakina IT; Konopleva MV; Proshina ES; Linnik EV; Nikitina NI
    Vopr Virusol; 2019; 64(3):125-131. PubMed ID: 31622059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiviral activity of novel oseltamivir derivatives against some influenza virus strains.
    Kocik J; Kołodziej M; Joniec J; Kwiatek M; Bartoszcze M
    Acta Biochim Pol; 2014; 61(3):509-13. PubMed ID: 25210935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-influenza virus activity of Ginkgo biloba leaf extracts.
    Haruyama T; Nagata K
    J Nat Med; 2013 Jul; 67(3):636-42. PubMed ID: 23179317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiviral activity of an aqueous extract derived from Aloe arborescens Mill. against a broad panel of viruses causing infections of the upper respiratory tract.
    Glatthaar-Saalmüller B; Fal AM; Schönknecht K; Conrad F; Sievers H; Saalmüller A
    Phytomedicine; 2015 Sep; 22(10):911-20. PubMed ID: 26321740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiviral activity of SA-2 against influenza A virus in vitro/vivo and its inhibition of RNA polymerase.
    Yu J; Wang D; Jin J; Xu J; Li M; Wang H; Dou J; Zhou C
    Antiviral Res; 2016 Mar; 127():68-78. PubMed ID: 26802558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of dihydro-alkyloxy-benzyl-oxopyrimidines as promising anti-influenza virus agents.
    Yu M; Liu A; Du G; Naesens L; Vanderlinden E; De Clercq E; Liu X
    Chem Biol Drug Des; 2011 Oct; 78(4):596-602. PubMed ID: 21752202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zanamivir-resistant influenza viruses with Q136K or Q136R neuraminidase residue mutations can arise during MDCK cell culture creating challenges for antiviral susceptibility monitoring.
    Little K; Leang SK; Butler J; Baas C; Harrower B; Mosse J; Barr IG; Hurt AC
    Euro Surveill; 2015; 20(45):. PubMed ID: 26608955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Germacrone inhibits early stages of influenza virus infection.
    Liao Q; Qian Z; Liu R; An L; Chen X
    Antiviral Res; 2013 Dec; 100(3):578-88. PubMed ID: 24095670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-influenza virus activity of Myrica rubra leaf ethanol extract evaluated using Madino-Darby canine kidney (MDCK) cells.
    Mochida K
    Biosci Biotechnol Biochem; 2008 Nov; 72(11):3018-20. PubMed ID: 18997411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural evidence of the oxidation of iodide ion into hyper-reactive hypoiodite ion by mammalian heme lactoperoxidase.
    Singh PK; Ahmad N; Yamini S; Singh RP; Singh AK; Sharma P; Smith ML; Sharma S; Singh TP
    Protein Sci; 2022 Feb; 31(2):384-395. PubMed ID: 34761444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual oxidase 1 promotes antiviral innate immunity.
    Sarr D; Gingerich AD; Asthiwi NM; Almutairi F; Sautto GA; Ecker J; Nagy T; Kilgore MB; Chandler JD; Ross TM; Tripp RA; Rada B
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34168077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional evaluation for adequacy of MDCK-lineage cells in influenza research.
    Tsai HC; Lehman CW; Lin CC; Tsai SW; Chen CM
    BMC Res Notes; 2019 Feb; 12(1):101. PubMed ID: 30808400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.