These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30044804)

  • 1. Coping with compliance during take-off and landing in the diamond dove (Geopelia cuneata).
    Crandell KE; Smith AF; Crino OL; Tobalske BW
    PLoS One; 2018; 13(7):e0199662. PubMed ID: 30044804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from wing to leg forces during landing in birds.
    Provini P; Tobalske BW; Crandell KE; Abourachid A
    J Exp Biol; 2014 Aug; 217(Pt 15):2659-66. PubMed ID: 24855670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition from leg to wing forces during take-off in birds.
    Provini P; Tobalske BW; Crandell KE; Abourachid A
    J Exp Biol; 2012 Dec; 215(Pt 23):4115-24. PubMed ID: 22972887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-body 3D kinematics of bird take-off: key role of the legs to propel the trunk.
    Provini P; Abourachid A
    Naturwissenschaften; 2018 Jan; 105(1-2):12. PubMed ID: 29330588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics and aerodynamics of avian upstrokes during slow flight.
    Crandell KE; Tobalske BW
    J Exp Biol; 2015 Aug; 218(Pt 16):2518-27. PubMed ID: 26089528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total recoil: perch compliance alters jumping performance and kinematics in green anole lizards (Anolis carolinensis).
    Gilman CA; Bartlett MD; Gillis GB; Irschick DJ
    J Exp Biol; 2012 Jan; 215(Pt 2):220-6. PubMed ID: 22189765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wing and body kinematics of takeoff and landing flight in the pigeon (Columba livia).
    Berg AM; Biewener AA
    J Exp Biol; 2010 May; 213(Pt 10):1651-8. PubMed ID: 20435815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of landing flight by laying hens: implications for the design of extensive housing systems.
    Moinard C; Statham P; Green PR
    Br Poult Sci; 2004 Oct; 45(5):578-84. PubMed ID: 15623208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Branching out in locomotion: the mechanics of perch use in birds and primates.
    Bonser RH
    J Exp Biol; 1999 Jun; 202(Pt 11):1459-63. PubMed ID: 10229692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of landing behaviour of three layer lines on different perch designs.
    Scholz B; Kjaer JB; Schrader L
    Br Poult Sci; 2014; 55(4):419-26. PubMed ID: 24969033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic pressure maps for wings and tails of pigeons in slow, flapping flight, and their energetic implications.
    Usherwood JR; Hedrick TL; McGowan CP; Biewener AA
    J Exp Biol; 2005 Jan; 208(Pt 2):355-69. PubMed ID: 15634854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life in extreme environments: Investigations on the ecophysiology of a desert bird, the Australian Diamond Dove (Geopelia cuneata Latham).
    Schleucher E; Prinzinger R; Withers PC
    Oecologia; 1991 Sep; 88(1):72-76. PubMed ID: 28312733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dynamics and stability framework for avian jumping take-off.
    Parslew B; Sivalingam G; Crowther W
    R Soc Open Sci; 2018 Oct; 5(10):181544. PubMed ID: 30473867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle function during takeoff and landing flight in the pigeon (Columba livia).
    Robertson AM; Biewener AA
    J Exp Biol; 2012 Dec; 215(Pt 23):4104-14. PubMed ID: 22972885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interspecific comparison of traffic noise effects on dove coo transmission in urban environments.
    Shieh BS; Liang SH; Chiu YW; Lin SY
    Sci Rep; 2016 Aug; 6():32519. PubMed ID: 27578359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels Glaucomys sabrinus.
    Paskins KE; Bowyer A; Megill WM; Scheibe JS
    J Exp Biol; 2007 Apr; 210(Pt 8):1413-23. PubMed ID: 17401124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of leaping primates: influence of substrate orientation and compliance.
    Demes B; Jungers WL; Gross TS; Fleagle JG
    Am J Phys Anthropol; 1995 Apr; 96(4):419-29. PubMed ID: 7604894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust jumping performance and elastic energy recovery from compliant perches in tree frogs.
    Astley HC; Haruta A; Roberts TJ
    J Exp Biol; 2015 Nov; 218(Pt 21):3360-3. PubMed ID: 26538173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Becoming airborne without legs: the kinematics of take-off in a flying snake, Chrysopelea paradisi.
    Socha JJ
    J Exp Biol; 2006 Sep; 209(Pt 17):3358-69. PubMed ID: 16916972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The broad range of contractile behaviour of the avian pectoralis: functional and evolutionary implications.
    Jackson BE; Tobalske BW; Dial KP
    J Exp Biol; 2011 Jul; 214(Pt 14):2354-61. PubMed ID: 21697427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.