These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30044808)

  • 21. Detecting
    Sangüesa-Barreda G; Villalba R; Rozas V; Christie DA; Olano JM
    Front Plant Sci; 2019; 10():1413. PubMed ID: 31737025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combating Spring Frost With Ethylene.
    Liu J; Sherif SM
    Front Plant Sci; 2019; 10():1408. PubMed ID: 31737021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration.
    Montwé D; Isaac-Renton M; Hamann A; Spiecker H
    Nat Commun; 2018 Apr; 9(1):1574. PubMed ID: 29686289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate change reduces frost exposure for high-value California orchard crops.
    Parker L; Pathak T; Ostoja S
    Sci Total Environ; 2021 Mar; 762():143971. PubMed ID: 33373749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spring frost vulnerability of sweet cherries under controlled conditions.
    Matzneller P; Götz KP; Chmielewski FM
    Int J Biometeorol; 2016 Jan; 60(1):123-30. PubMed ID: 26022603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time.
    Parent B; Leclere M; Lacube S; Semenov MA; Welcker C; Martre P; Tardieu F
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10642-10647. PubMed ID: 30275304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct and indirect effects of episodic frost on plant growth and reproduction in subalpine wildflowers.
    Pardee GL; Inouye DW; Irwin RE
    Glob Chang Biol; 2018 Feb; 24(2):848-857. PubMed ID: 28805338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Winter frost resistance of Pinus cembra measured in situ at the alpine timberline as affected by temperature conditions.
    Buchner O; Neuner G
    Tree Physiol; 2011 Nov; 31(11):1217-27. PubMed ID: 22011966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Risk assessment of frost damage to sugar beet simulated under cold and semi-arid environments.
    Deihimfard R; Rahimi-Moghaddam S; Chenu K
    Int J Biometeorol; 2019 Apr; 63(4):511-521. PubMed ID: 30756175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodiversity ensures plant-pollinator phenological synchrony against climate change.
    Bartomeus I; Park MG; Gibbs J; Danforth BN; Lakso AN; Winfree R
    Ecol Lett; 2013 Nov; 16(11):1331-8. PubMed ID: 23968538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.
    Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Challenges in predicting climate change impacts on pome fruit phenology.
    Darbyshire R; Webb L; Goodwin I; Barlow EW
    Int J Biometeorol; 2014 Aug; 58(6):1119-33. PubMed ID: 23877816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adapting crop rotations to climate change in regional impact modelling assessments.
    Teixeira EI; de Ruiter J; Ausseil AG; Daigneault A; Johnstone P; Holmes A; Tait A; Ewert F
    Sci Total Environ; 2018 Mar; 616-617():785-795. PubMed ID: 29103648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: a comparison of two models.
    Linkosalo T; Carter TR; Häkkinen R; Hari P
    Tree Physiol; 2000 Nov; 20(17):1175-1182. PubMed ID: 12651493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring epigenetic variation for breeding climate resilient apple crops.
    Lempe J; Flachowsky H; Peil A
    Physiol Plant; 2022 Sep; 174(5):e13782. PubMed ID: 36151889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An indicator of freeze-kill damages to fruit trees during flowering.
    Kaharabata S; Desjardins RL
    Int J Biometeorol; 2021 Jun; 65(6):813-825. PubMed ID: 33523308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An assessment of the relationship between spring frost indicators and global crop yield losses.
    Guo W; Dai H; Qian J; Tan J; Xu Z; Guo Y
    Sci Total Environ; 2024 Sep; 954():176560. PubMed ID: 39357755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abundance of adverse environmental conditions during critical stages of crop production in Northern Germany.
    Strer M; Svoboda N; Herrmann A
    Environ Sci Eur; 2018; 30(1):10. PubMed ID: 29629251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.
    Falloon P; Betts R
    Sci Total Environ; 2010 Nov; 408(23):5667-87. PubMed ID: 19501386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amphibian breeding phenology trends under climate change: predicting the past to forecast the future.
    Green DM
    Glob Chang Biol; 2017 Feb; 23(2):646-656. PubMed ID: 27273300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.