These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30044915)

  • 1. Effect of Molecular Weight and Functionality on Acrylated Poly(caprolactone) for Stereolithography and Biomedical Applications.
    Green BJ; Worthington KS; Thompson JR; Bunn SJ; Rethwisch M; Kaalberg EE; Jiao C; Wiley LA; Mullins RF; Stone EM; Sohn EH; Tucker BA; Guymon CA
    Biomacromolecules; 2018 Sep; 19(9):3682-3692. PubMed ID: 30044915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Tuneable, Photocurable, Poly(Caprolactone)-Based Resin for Tissue Engineering-Synthesis, Characterisation and Use in Stereolithography.
    Field J; Haycock JW; Boissonade FM; Claeyssens F
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33668087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility.
    Thompson JR; Worthington KS; Green BJ; Mullin NK; Jiao C; Kaalberg EE; Wiley LA; Han IC; Russell SR; Sohn EH; Guymon CA; Mullins RF; Stone EM; Tucker BA
    Acta Biomater; 2019 Aug; 94():204-218. PubMed ID: 31055121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melt electrowriting of a biocompatible photo-crosslinkable poly(D,L-lactic acid)/poly(ε-caprolactone)-based material with tunable mechanical and functionalization properties.
    Darroch C; Asaro GA; Gréant C; Suku M; Pien N; van Vlierberghe S; Monaghan MG
    J Biomed Mater Res A; 2023 Jun; 111(6):851-862. PubMed ID: 36951312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography.
    Elomaa L; Keshi E; Sauer IM; Weinhart M
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of an UV-Curable Divinyl-Fumarate Poly-ε-Caprolactone for Stereolithography Applications.
    Ronca A; Ronca S; Forte G; Ambrosio L
    Methods Mol Biol; 2021; 2147():55-62. PubMed ID: 32840810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds.
    Atzet S; Curtin S; Trinh P; Bryant S; Ratner B
    Biomacromolecules; 2008 Dec; 9(12):3370-7. PubMed ID: 19061434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
    Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE
    Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of Poly(ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells.
    V S S; P V M
    Colloids Surf B Biointerfaces; 2018 Mar; 163():107-118. PubMed ID: 29287231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melt electrowriting of poly(
    Darroch C; Digeronimo F; Asaro G; Minsart M; Pien N; van Vlierberghe S; Monaghan MG
    Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 38914083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers.
    Yang X; Cui C; Tong Z; Sabanayagam CR; Jia X
    Acta Biomater; 2013 Sep; 9(9):8232-44. PubMed ID: 23770222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers.
    Pal J; Kankariya N; Sanwaria S; Nandan B; Srivastava RK
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4213-20. PubMed ID: 23910335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of Physical and Degradation Properties of 3D-Printed Biodegradable, Photocurable Copolymers, PGSA-
    Chen JY; Hwang JV; Ao-Ieong WS; Lin YC; Hsieh YK; Cheng YL; Wang J
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled supramolecular polymers with tailorable properties that enhance cell attachment and proliferation.
    Cheng CC; Lee DJ; Chen JK
    Acta Biomater; 2017 Mar; 50():476-483. PubMed ID: 28003144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.
    Woodard LN; Page VM; Kmetz KT; Grunlan MA
    Macromol Rapid Commun; 2016 Dec; 37(23):1972-1977. PubMed ID: 27774684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate.
    Shen JY; Pan XY; Lim CH; Chan-Park MB; Zhu X; Beuerman RW
    Biomacromolecules; 2007 Feb; 8(2):376-85. PubMed ID: 17291060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of a photo-cross-linked biodegradable elastomer.
    Amsden BG; Misra G; Gu F; Younes HM
    Biomacromolecules; 2004; 5(6):2479-86. PubMed ID: 15530066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography.
    Elomaa L; Teixeira S; Hakala R; Korhonen H; Grijpma DW; Seppälä JV
    Acta Biomater; 2011 Nov; 7(11):3850-6. PubMed ID: 21763796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.