BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30044971)

  • 1. C24 Sphingolipids Govern the Transbilayer Asymmetry of Cholesterol and Lateral Organization of Model and Live-Cell Plasma Membranes.
    Courtney KC; Pezeshkian W; Raghupathy R; Zhang C; Darbyson A; Ipsen JH; Ford DA; Khandelia H; Presley JF; Zha X
    Cell Rep; 2018 Jul; 24(4):1037-1049. PubMed ID: 30044971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long acyl chain ceramides govern cholesterol and cytoskeleton dependence of membrane outer leaflet dynamics.
    Gupta A; Muralidharan S; Torta F; Wenk MR; Wohland T
    Biochim Biophys Acta Biomembr; 2020 Mar; 1862(3):183153. PubMed ID: 31857071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brij detergents reveal new aspects of membrane microdomain in erythrocytes.
    Casadei BR; De Oliveira Carvalho P; Riske KA; Barbosa Rde M; De Paula E; Domingues CC
    Mol Membr Biol; 2014 Sep; 31(6):195-205. PubMed ID: 25222860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sphingomyelin regulates the transbilayer movement of diacylglycerol in the plasma membrane of Madin-Darby canine kidney cells.
    Ueda Y; Makino A; Murase-Tamada K; Sakai S; Inaba T; Hullin-Matsuda F; Kobayashi T
    FASEB J; 2013 Aug; 27(8):3284-97. PubMed ID: 23682124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric bilayers mimicking membrane rafts prepared by lipid exchange: Nanoscale characterization using AFM-Force spectroscopy.
    Vázquez RF; Ovalle-García E; Antillón A; Ortega-Blake I; Bakás LS; Muñoz-Garay C; Maté SM
    Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183467. PubMed ID: 32871116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane asymmetry and lateral domains in biological membranes.
    Devaux PF; Morris R
    Traffic; 2004 Apr; 5(4):241-6. PubMed ID: 15030565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingolipid symmetry governs membrane lipid raft structure.
    Quinn PJ
    Biochim Biophys Acta; 2014 Jul; 1838(7):1922-30. PubMed ID: 24613791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.
    Li G; Kim J; Huang Z; St Clair JR; Brown DA; London E
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14025-14030. PubMed ID: 27872310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of lipid species in membranes and cancer-related changes.
    Skotland T; Kavaliauskiene S; Sandvig K
    Cancer Metastasis Rev; 2020 Jun; 39(2):343-360. PubMed ID: 32314087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widespread tissue distribution and synthetic pathway of polyunsaturated C24:2 sphingolipids in mammals.
    Edagawa M; Sawai M; Ohno Y; Kihara A
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Dec; 1863(12):1441-1448. PubMed ID: 30251650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of Ordered Lipid Raft Domain Formation by Loss of Lipid Asymmetry.
    St Clair JW; Kakuda S; London E
    Biophys J; 2020 Aug; 119(3):483-492. PubMed ID: 32710822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of plasma membrane lipid domains to red blood cell (re)shaping.
    Leonard C; Conrard L; Guthmann M; Pollet H; Carquin M; Vermylen C; Gailly P; Van Der Smissen P; Mingeot-Leclercq MP; Tyteca D
    Sci Rep; 2017 Jun; 7(1):4264. PubMed ID: 28655935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extent of raft composition in a model plasma membrane.
    Allender DW; Schick M
    Biophys J; 2023 Jun; 122(11):1956-1961. PubMed ID: 36050886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase behaviour of C18-N-acyl sphingolipids, the prevalent species in human brain.
    González-Ramírez EJ; Etxaniz A; Alonso A; Goñi FM
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112855. PubMed ID: 36137336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphingomyelin modulates the transbilayer distribution of galactosylceramide in phospholipid membranes.
    Mattjus P; Malewicz B; Valiyaveettil JT; Baumann WJ; Bittman R; Brown RE
    J Biol Chem; 2002 May; 277(22):19476-81. PubMed ID: 11909867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Very-long-chain fatty acid sphingomyelin in nuclear lipid microdomains of hepatocytes and hepatoma cells: can the exchange from C24:0 to C16:0 affect signal proteins and vitamin D receptor?
    Lazzarini A; Macchiarulo A; Floridi A; Coletti A; Cataldi S; Codini M; Lazzarini R; Bartoccini E; Cascianelli G; Ambesi-Impiombato FS; Beccari T; Curcio F; Albi E
    Mol Biol Cell; 2015 Jul; 26(13):2418-25. PubMed ID: 26124436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid fluidity of the individual hemileaflets of human erythrocyte membranes.
    Schachter D; Abbott RE; Cogan U; Flamm M
    Ann N Y Acad Sci; 1983; 414():19-28. PubMed ID: 6584076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol is not crucial for the existence of microdomains in kidney brush-border membrane models.
    Milhiet PE; Giocondi MC; Le Grimellec C
    J Biol Chem; 2002 Jan; 277(2):875-8. PubMed ID: 11717303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.