BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30045021)

  • 21. Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase.
    Holder S; Zemskova M; Zhang C; Tabrizizad M; Bremer R; Neidigh JW; Lilly MB
    Mol Cancer Ther; 2007 Jan; 6(1):163-72. PubMed ID: 17218638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinase PIM1 promotes prostate cancer cell growth via c-Myc-RPS7-driven ribosomal stress.
    Zhang C; Qie Y; Yang T; Wang L; Du E; Liu Y; Xu Y; Qiao B; Zhang Z
    Carcinogenesis; 2019 Mar; 40(1):52-60. PubMed ID: 30247545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of CXCR4/CXCL12 signaling axis by ursolic acid leads to suppression of metastasis in transgenic adenocarcinoma of mouse prostate model.
    Shanmugam MK; Manu KA; Ong TH; Ramachandran L; Surana R; Bist P; Lim LH; Kumar AP; Hui KM; Sethi G
    Int J Cancer; 2011 Oct; 129(7):1552-63. PubMed ID: 21480220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using insights into Pim1 structure to design new anticancer drugs.
    Schenone S; Tintori C; Botta M
    Curr Pharm Des; 2010; 16(35):3964-78. PubMed ID: 21158732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PIM1 kinase as a target for cancer therapy.
    Merkel AL; Meggers E; Ocker M
    Expert Opin Investig Drugs; 2012 Apr; 21(4):425-36. PubMed ID: 22385334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proinflammatory CXCL12-CXCR4/CXCR7 Signaling Axis Drives Myc-Induced Prostate Cancer in Obese Mice.
    Saha A; Ahn S; Blando J; Su F; Kolonin MG; DiGiovanni J
    Cancer Res; 2017 Sep; 77(18):5158-5168. PubMed ID: 28687617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PIM1 accelerates prostate cancer cell motility by phosphorylating actin capping proteins.
    Santio NM; Vainio V; Hoikkala T; Mung KL; Lång M; Vahakoski R; Zdrojewska J; Coffey ET; Kremneva E; Rainio EM; Koskinen PJ
    Cell Commun Signal; 2020 Aug; 18(1):121. PubMed ID: 32771000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells.
    Kim W; Youn H; Kwon T; Kang J; Kim E; Son B; Yang HJ; Jung Y; Youn B
    Pharmacol Res; 2013 Apr; 70(1):90-101. PubMed ID: 23352980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pim1 kinase is required to maintain tumorigenicity in MYC-expressing prostate cancer cells.
    Wang J; Anderson PD; Luo W; Gius D; Roh M; Abdulkadir SA
    Oncogene; 2012 Apr; 31(14):1794-803. PubMed ID: 21860423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PIM-1 kinase inhibitor SMI-4a exerts antitumor effects in chronic myeloid leukemia cells by enhancing the activity of glycogen synthase kinase 3β.
    Fan RF; Lu Y; Fang ZG; Guo XY; Chen YX; Xu YC; Lei YM; Liu KF; Lin DJ; Liu LL; Liu XF
    Mol Med Rep; 2017 Oct; 16(4):4603-4612. PubMed ID: 28849186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pim1 regulates androgen-dependent survival signaling in prostate cancer cells.
    van der Poel HG; Zevenhoven J; Bergman AM
    Urol Int; 2010; 84(2):212-20. PubMed ID: 20215828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer.
    Zhang S; Qi L; Li M; Zhang D; Xu S; Wang N; Sun B
    J Exp Clin Cancer Res; 2008 Nov; 27(1):62. PubMed ID: 18983683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PIM1 regulates glycolysis and promotes tumor progression in hepatocellular carcinoma.
    Leung CO; Wong CC; Fan DN; Kai AK; Tung EK; Xu IM; Ng IO; Lo RC
    Oncotarget; 2015 May; 6(13):10880-92. PubMed ID: 25834102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GLIPR1-ΔTM synergizes with docetaxel in cell death and suppresses resistance to docetaxel in prostate cancer cells.
    Karanika S; Karantanos T; Kurosaka S; Wang J; Hirayama T; Yang G; Park S; Golstov AA; Tanimoto R; Li L; Thompson TC
    Mol Cancer; 2015 Jun; 14():122. PubMed ID: 26084402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and biological evaluation of quinoline derivatives as potential anti-prostate cancer agents and Pim-1 kinase inhibitors.
    Li K; Li Y; Zhou D; Fan Y; Guo H; Ma T; Wen J; Liu D; Zhao L
    Bioorg Med Chem; 2016 Apr; 24(8):1889-97. PubMed ID: 26979485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conditional transgenic expression of PIM1 kinase in prostate induces inflammation-dependent neoplasia.
    Narlik-Grassow M; Blanco-Aparicio C; Cecilia Y; Perez M; Muñoz-Galvan S; Cañamero M; Renner O; Carnero A
    PLoS One; 2013; 8(4):e60277. PubMed ID: 23565217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D QSAR studies, molecular docking and ADMET evaluation, using thiazolidine derivatives as template to obtain new inhibitors of PIM1 kinase.
    Aouidate A; Ghaleb A; Ghamali M; Ousaa A; Choukrad M; Sbai A; Bouachrine M; Lakhlifi T
    Comput Biol Chem; 2018 Jun; 74():201-211. PubMed ID: 29635214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PIM1 targeted degradation prevents the emergence of chemoresistance in prostate cancer.
    Torres-Ayuso P; Katerji M; Mehlich D; Lookingbill SA; Sabbasani VR; Liou H; Casillas AL; Chauhan SS; Serwa R; Rubin MR; Marusiak AA; Swenson RE; Warfel NA; Brognard J
    Cell Chem Biol; 2024 Feb; 31(2):326-337.e11. PubMed ID: 38016478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights from Pim1 structure for anti-cancer drug design.
    Ogawa N; Yuki H; Tanaka A
    Expert Opin Drug Discov; 2012 Dec; 7(12):1177-92. PubMed ID: 23004574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of PIM1 substrates reveals a role for NDRG1 phosphorylation in prostate cancer cellular migration and invasion.
    Ledet RJ; Ruff SE; Wang Y; Nayak S; Schneider JA; Ueberheide B; Logan SK; Garabedian MJ
    Commun Biol; 2021 Jan; 4(1):36. PubMed ID: 33398037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.