BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30045527)

  • 61. Effectiveness of zerovalent iron and nickel catalysts for degrading chlorinated solvents and n-nitrosodimethylamine in natural groundwater.
    Schaefer CE; Topoleski C; Fuller ME
    Water Environ Res; 2007 Jan; 79(1):57-62. PubMed ID: 17290972
    [TBL] [Abstract][Full Text] [Related]  

  • 62. In-situ treatment of herbicide-contaminated groundwater-Feasibility study for the cases atrazine and bromacil using two novel nanoremediation-type materials.
    Gawel A; Seiwert B; Sühnholz S; Schmitt-Jansen M; Mackenzie K
    J Hazard Mater; 2020 Jul; 393():122470. PubMed ID: 32208331
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions.
    Cho Y; Choi SI
    Chemosphere; 2010 Nov; 81(7):940-5. PubMed ID: 20723967
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Dechlorination of chlorinated ethenes under different redox conditions].
    Lu X; Li G; Zhang X; Zhang W
    Huan Jing Ke Xue; 2002 Mar; 23(2):29-33. PubMed ID: 12048814
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The biological denitrification coupled with chemical reduction for groundwater nitrate remediation via using SCCMs as carbon source.
    Zhang W; Bai Y; Ruan X; Yin L
    Chemosphere; 2019 Nov; 234():89-97. PubMed ID: 31203045
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Enhanced remediation of 4-chloronitrobenzene contaminated groundwater with nanoscale zero-valence iron (nZVI) catalyzed hydrogen peroxide (H2O2)].
    Fu RB
    Huan Jing Ke Xue; 2014 Apr; 35(4):1351-7. PubMed ID: 24946587
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ.
    Piscopo AN; Neupauer RM; Kasprzyk JR
    J Contam Hydrol; 2016 Jul; 190():29-43. PubMed ID: 27153361
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Isolation and quantitative detection of tetrachloroethene (PCE)-dechlorinating bacteria in unsaturated subsurface soils contaminated with chloroethenes.
    Yoshida N; Asahi K; Sakakibara Y; Miyake K; Katayama A
    J Biosci Bioeng; 2007 Aug; 104(2):91-7. PubMed ID: 17884652
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synergetic degradation of Fe/Cu/C for groundwater polluted by trichloroethylene.
    Zhang W; Li L; Lin K; Xiong B; Li B; Lu S; Guo M; Cui X
    Water Sci Technol; 2012; 65(12):2258-64. PubMed ID: 22643424
    [TBL] [Abstract][Full Text] [Related]  

  • 70. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site.
    Audí-Miró C; Cretnik S; Torrentó C; Rosell M; Shouakar-Stash O; Otero N; Palau J; Elsner M; Soler A
    J Hazard Mater; 2015 Dec; 299():747-54. PubMed ID: 26248540
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR.
    Hunkeler D; Abe Y; Broholm MM; Jeannottat S; Westergaard C; Jacobsen CS; Aravena R; Bjerg PL
    J Contam Hydrol; 2011 Jan; 119(1-4):69-79. PubMed ID: 21030108
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of pore velocity on biodegradation of cis-dichloroethene (DCE) in column experiments.
    Mendoza-Sanchez I; Autenrieth RL; McDonald TJ; Cunningham JA
    Biodegradation; 2010 Jun; 21(3):365-77. PubMed ID: 19894128
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds.
    Erto A; Bortone I; Di Nardo A; Di Natale M; Musmarra D
    J Environ Manage; 2014 Jul; 140():111-9. PubMed ID: 24747934
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Determination of carbon isotope enrichment factors of cis-dichloroethene after precursor amendment.
    Leitner S; Reichenauer TG; Watzinger A
    Rapid Commun Mass Spectrom; 2017 Oct; 31(20):1699-1708. PubMed ID: 28805260
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Survival of Vinyl Chloride Respiring Dehalococcoides mccartyi under Long-Term Electron Donor Limitation.
    Mayer-Blackwell K; Azizian MF; Green JK; Spormann AM; Semprini L
    Environ Sci Technol; 2017 Feb; 51(3):1635-1642. PubMed ID: 28002948
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments.
    Broholm MM; Hunkeler D; Tuxen N; Jeannottat S; Scheutz C
    Chemosphere; 2014 Aug; 108():265-73. PubMed ID: 24559936
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microbial dynamics during and after in situ chemical oxidation of chlorinated solvents.
    Sutton NB; Atashgahi S; van der Wal J; Wijn G; Grotenhuis T; Smidt H; Rijnaarts HH
    Ground Water; 2015; 53(2):261-70. PubMed ID: 24898385
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation.
    Sutton NB; Atashgahi S; Saccenti E; Grotenhuis T; Smidt H; Rijnaarts HH
    PLoS One; 2015; 10(8):e0134615. PubMed ID: 26244346
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination.
    Cichocka D; Imfeld G; Richnow HH; Nijenhuis I
    Chemosphere; 2008 Mar; 71(4):639-48. PubMed ID: 18155126
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterizing natural degradation of tetrachloroethene (PCE) using a multidisciplinary approach.
    Åkesson S; Sparrenbom CJ; Paul CJ; Jansson R; Holmstrand H
    Ambio; 2021 May; 50(5):1074-1088. PubMed ID: 33263919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.