BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30045616)

  • 1. In Vivo Vibration Measurement of Middle Ear Structure Using Doppler Optical Coherence Tomography: Preliminary Study.
    Jeon D; Cho NH; Park K; Kim K; Jeon M; Jang JH; Kim J
    Clin Exp Otorhinolaryngol; 2019 Feb; 12(1):40-49. PubMed ID: 30045616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography.
    Burkhardt A; Kirsten L; Bornitz M; Zahnert T; Koch E
    J Biophotonics; 2014 Jun; 7(6):434-41. PubMed ID: 23225692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Vibrating Tympanic Membrane in an In Vivo Mouse Model Using Doppler Optical Coherence Tomography.
    Jeon D; Kim JK; Jeon M; Kim J
    J Imaging; 2019 Sep; 5(9):. PubMed ID: 34460668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid.
    Zhang X; Guan X; Nakmali D; Palan V; Pineda M; Gan RZ
    J Assoc Res Otolaryngol; 2014 Dec; 15(6):867-81. PubMed ID: 25106467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential multipoint motion of the tympanic membrane measured by laser Doppler vibrometry: preliminary results for normal tympanic membrane.
    Kunimoto Y; Hasegawa K; Arii S; Kataoka H; Yazama H; Kuya J; Kitano H
    Otol Neurotol; 2014 Apr; 35(4):719-24. PubMed ID: 24317215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Ossicular vibration in human temporal bones].
    Aritomo H
    Nihon Jibiinkoka Gakkai Kaiho; 1989 Sep; 92(9):1359-70. PubMed ID: 2585204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method to measure sound transmission via the malleus-incus complex.
    Dobrev I; Ihrle S; Röösli C; Gerig R; Eiber A; Huber AM; Sim JH
    Hear Res; 2016 Oct; 340():89-98. PubMed ID: 26626362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Characterization of Micro-Vibration in Natural Latex Membrane Resembling Tympanic Membrane Functionally Using Optical Doppler Tomography.
    Seong D; Kwon J; Jeon D; Wijesinghe RE; Lee J; Ravichandran NK; Han S; Lee J; Kim P; Jeon M; Kim J
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endoscopic optical coherence tomography with wide field-of-view for the morphological and functional assessment of the human tympanic membrane.
    Kirsten L; Schindler M; Morgenstern J; Erkkilä MT; Golde J; Walther J; Rottmann P; Kemper M; Bornitz M; Neudert M; Zahnert T; Koch E
    J Biomed Opt; 2018 Dec; 24(3):1-11. PubMed ID: 30516037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of increased inner ear pressure on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Otolaryngol Head Neck Surg; 1998 May; 118(5):703-8. PubMed ID: 9591878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration of Tympanic Membrane Influenced by Middle Ear Fluid.
    Wang L; Wang J; Zhang L; Li X
    Ear Nose Throat J; 2022 Apr; ():1455613221086023. PubMed ID: 35363096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of ossicular chain vibration at the umbo: implications for a middle ear microelectromechanical system design.
    Young DJ; Zurcher MA; Trang T; Megerian CA; Ko WH
    Ear Nose Throat J; 2010 Jan; 89(1):21-6. PubMed ID: 20155695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of middle ear structure and function with optical coherence tomography.
    Meenderink SWF; Warn M; Anchondo LM; Liu Y; Jung TTK; Dong W
    Acta Otolaryngol; 2023; 143(7):558-562. PubMed ID: 37366291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of middle ear pressure change on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Acta Otolaryngol; 1997 May; 117(3):390-5. PubMed ID: 9199525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors contributing to bone conduction: the middle ear.
    Stenfelt S; Hato N; Goode RL
    J Acoust Soc Am; 2002 Feb; 111(2):947-59. PubMed ID: 11863197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional assessment of moisture influenced cadaveric tympanic membrane using phase shift-resolved optical Doppler vibrography.
    Jeon B; Lee J; Jeon D; Kim P; Jang JH; Wijesinghe RE; Jeon M; Kim J
    J Biophotonics; 2020 Feb; 13(2):e201900202. PubMed ID: 31670908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography.
    Hubler Z; Shemonski ND; Shelton RL; Monroy GL; Nolan RM; Boppart SA
    Quant Imaging Med Surg; 2015 Feb; 5(1):69-77. PubMed ID: 25694956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of changes in mass on middle ear function.
    Nishihara S; Aritomo H; Goode RL
    Otolaryngol Head Neck Surg; 1993 Nov; 109(5):899-910. PubMed ID: 8247572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ossicular vibration changes associated with pressure changes in inner ear and cerebrospinal fluid in guinea pigs].
    Shinohara T
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Feb; 100(2):236-43. PubMed ID: 9071124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors contributing to bone conduction: the outer ear.
    Stenfelt S; Wild T; Hato N; Goode RL
    J Acoust Soc Am; 2003 Feb; 113(2):902-13. PubMed ID: 12597184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.