These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 30045727)
1. Extracting proteins involved in disease progression using temporally connected networks. Anand R; Sarmah DT; Chatterjee S BMC Syst Biol; 2018 Jul; 12(1):78. PubMed ID: 30045727 [TBL] [Abstract][Full Text] [Related]
2. Tracking disease progression by searching paths in a temporal network of biological processes. Anand R; Chatterjee S PLoS One; 2017; 12(4):e0176172. PubMed ID: 28448511 [TBL] [Abstract][Full Text] [Related]
3. Extracting Genes Involved in Disease from a Connected Network of Perturbed Biological Processes. Anand R; Chatterjee S J Comput Biol; 2017 May; 24(5):460-469. PubMed ID: 28294634 [TBL] [Abstract][Full Text] [Related]
4. NERI: network-medicine based integrative approach for disease gene prioritization by relative importance. Simões SN; Martins DC; Pereira CA; Hashimoto RF; Brentani H BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S9. PubMed ID: 26696568 [TBL] [Abstract][Full Text] [Related]
5. Prioritizing disease genes with an improved dual label propagation framework. Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030 [TBL] [Abstract][Full Text] [Related]
6. EpiTracer - an algorithm for identifying epicenters in condition-specific biological networks. Sambaturu N; Mishra M; Chandra N BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):543. PubMed ID: 27556637 [TBL] [Abstract][Full Text] [Related]
7. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression. Zhang SW; Shao DD; Zhang SY; Wang YB Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957 [TBL] [Abstract][Full Text] [Related]
8. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network. Khunlertgit N; Yoon BJ BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944 [TBL] [Abstract][Full Text] [Related]
9. Identification of protein complexes from multi-relationship protein interaction networks. Li X; Wang J; Zhao B; Wu FX; Pan Y Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):17. PubMed ID: 27461193 [TBL] [Abstract][Full Text] [Related]
10. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks. Xu B; Guan J IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332 [TBL] [Abstract][Full Text] [Related]
11. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency. Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273 [TBL] [Abstract][Full Text] [Related]
12. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks. Ou-Yang L; Yan H; Zhang XF BMC Bioinformatics; 2017 Dec; 18(Suppl 13):463. PubMed ID: 29219066 [TBL] [Abstract][Full Text] [Related]
13. Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model. Jeong H; Qian X; Yoon BJ BMC Bioinformatics; 2016 Oct; 17(Suppl 13):395. PubMed ID: 27766938 [TBL] [Abstract][Full Text] [Related]
14. Mining Temporal Protein Complex Based on the Dynamic PIN Weighted with Connected Affinity and Gene Co-Expression. Shen X; Yi L; Jiang X; He T; Hu X; Yang J PLoS One; 2016; 11(4):e0153967. PubMed ID: 27100396 [TBL] [Abstract][Full Text] [Related]
15. Altering Indispensable Proteins in Controlling Directed Human Protein Interaction Network. Zhang X IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):2074-2078. PubMed ID: 29994604 [TBL] [Abstract][Full Text] [Related]
16. Protein complex prediction with RNSC. King AD; Pržulj N; Jurisica I Methods Mol Biol; 2012; 804():297-312. PubMed ID: 22144160 [TBL] [Abstract][Full Text] [Related]
17. Network-based prediction and knowledge mining of disease genes. Carson MB; Lu H BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S9. PubMed ID: 26043920 [TBL] [Abstract][Full Text] [Related]
18. A method for predicting protein complex in dynamic PPI networks. Zhang Y; Lin H; Yang Z; Wang J; Liu Y; Sang S BMC Bioinformatics; 2016 Jul; 17 Suppl 7(Suppl 7):229. PubMed ID: 27454775 [TBL] [Abstract][Full Text] [Related]
19. Protein-protein interaction networks and different clustering analysis in Burkitt's lymphoma. Liu C; Liu L; Zhou C; Zhuang J; Wang L; Sun Y; Sun C Hematology; 2018 Aug; 23(7):391-398. PubMed ID: 29189103 [TBL] [Abstract][Full Text] [Related]
20. Integrating experimental and literature protein-protein interaction data for protein complex prediction. Zhang Y; Lin H; Yang Z; Wang J BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S4. PubMed ID: 25708571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]