BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30045760)

  • 1. A two-stage microbial association mapping framework with advanced FDR control.
    Hu J; Koh H; He L; Liu M; Blaser MJ; Li H
    Microbiome; 2018 Jul; 6(1):131. PubMed ID: 30045760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping.
    Koh H; Blaser MJ; Li H
    Microbiome; 2017 Apr; 5(1):45. PubMed ID: 28438217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. False discovery rate control incorporating phylogenetic tree increases detection power in microbiome-wide multiple testing.
    Xiao J; Cao H; Chen J
    Bioinformatics; 2017 Sep; 33(18):2873-2881. PubMed ID: 28505251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating Phylogenetic Information in Microbiome Differential Abundance Studies Has No Effect on Detection Power and FDR Control.
    Bichat A; Plassais J; Ambroise C; Mariadassou M
    Front Microbiol; 2020; 11():649. PubMed ID: 32351481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An adaptive association test for microbiome data.
    Wu C; Chen J; Kim J; Pan W
    Genome Med; 2016 May; 8(1):56. PubMed ID: 27198579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogeny-guided microbiome OTU-specific association test (POST).
    Huang C; Callahan BJ; Wu MC; Holloway ST; Brochu H; Lu W; Peng X; Tzeng JY
    Microbiome; 2022 Jun; 10(1):86. PubMed ID: 35668471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general framework for association analysis of microbial communities on a taxonomic tree.
    Tang ZZ; Chen G; Alekseyenko AV; Li H
    Bioinformatics; 2017 May; 33(9):1278-1285. PubMed ID: 28003264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitatively Partitioning Microbial Genomic Traits among Taxonomic Ranks across the Microbial Tree of Life.
    Royalty TM; Steen AD
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31462411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel deep learning method for predictive modeling of microbiome data.
    Wang Y; Bhattacharya T; Jiang Y; Qin X; Wang Y; Liu Y; Saykin AJ; Chen L
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32406914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation and differential abundance analysis of microbiome data incorporating phylogeny.
    Zhou C; Zhao H; Wang T
    Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional knockoff filter for high-dimensional regression analysis of microbiome data.
    Srinivasan A; Xue L; Zhan X
    Biometrics; 2021 Sep; 77(3):984-995. PubMed ID: 32683674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HOMINID: a framework for identifying associations between host genetic variation and microbiome composition.
    Lynch J; Tang K; Priya S; Sands J; Sands M; Tang E; Mukherjee S; Knights D; Blekhman R
    Gigascience; 2017 Dec; 6(12):1-7. PubMed ID: 29126115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing hypotheses about the microbiome using the linear decomposition model (LDM).
    Hu YJ; Satten GA
    Bioinformatics; 2020 Aug; 36(14):4106-4115. PubMed ID: 32315393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A powerful microbial group association test based on the higher criticism analysis for sparse microbial association signals.
    Koh H; Zhao N
    Microbiome; 2020 May; 8(1):63. PubMed ID: 32393397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distance-based approach for testing the mediation effect of the human microbiome.
    Zhang J; Wei Z; Chen J
    Bioinformatics; 2018 Jun; 34(11):1875-1883. PubMed ID: 29346509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach to testing mediation of the microbiome at both the community and individual taxon levels.
    Yue Y; Hu YJ
    Bioinformatics; 2022 Jun; 38(12):3173-3180. PubMed ID: 35512399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taxonomic annotation of 16S rRNA sequences of pig intestinal samples using MG-RAST and QIIME2 generated different microbiota compositions.
    Lima J; Manning T; Rutherford KM; Baima ET; Dewhurst RJ; Walsh P; Roehe R
    J Microbiol Methods; 2021 Jul; 186():106235. PubMed ID: 33974954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecophylogenetics Clarifies the Evolutionary Association between Mammals and Their Gut Microbiota.
    Gaulke CA; Arnold HK; Humphreys IR; Kembel SW; O'Dwyer JP; Sharpton TJ
    mBio; 2018 Sep; 9(5):. PubMed ID: 30206171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.
    Fouquier J; Rideout JR; Bolyen E; Chase J; Shiffer A; McDonald D; Knight R; Caporaso JG; Kelley ST
    Microbiome; 2016 Feb; 4():11. PubMed ID: 26905735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TaxAss: Leveraging a Custom Freshwater Database Achieves Fine-Scale Taxonomic Resolution.
    Rohwer RR; Hamilton JJ; Newton RJ; McMahon KD
    mSphere; 2018 Sep; 3(5):. PubMed ID: 30185512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.