These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 3004614)

  • 21. Circular dichroism spectra of cytochrome c oxidase.
    Dyuba AV; Arutyunyan AM; Vygodina TV; Azarkina NV; Kalinovich AV; Sharonov YA; Konstantinov AA
    Metallomics; 2011 Apr; 3(4):417-32. PubMed ID: 21286652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polarized Fourier transform infrared spectroscopy of bacteriorhodopsin. Transmembrane alpha helices are resistant to hydrogen/deuterium exchange.
    Earnest TN; Herzfeld J; Rothschild KJ
    Biophys J; 1990 Dec; 58(6):1539-46. PubMed ID: 2275968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porcine cerebroside sulfate activator (saposin B) secondary structure: CD, FTIR, and NMR studies.
    Waring AJ; Chen Y; Faull KF; Stevens R; Sherman MA; Fluharty AL
    Mol Genet Metab; 1998 Jan; 63(1):14-25. PubMed ID: 9538512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association of alpha-synuclein and mutants with lipid membranes: spin-label ESR and polarized IR.
    Ramakrishnan M; Jensen PH; Marsh D
    Biochemistry; 2006 Mar; 45(10):3386-95. PubMed ID: 16519533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein secondary structure from Fourier transform infrared spectroscopy: a data base analysis.
    Sarver RW; Krueger WC
    Anal Biochem; 1991 Apr; 194(1):89-100. PubMed ID: 1867384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vibrational circular dichroism of protein films.
    Shanmugam G; Polavarapu PL
    J Am Chem Soc; 2004 Aug; 126(33):10292-5. PubMed ID: 15315442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Orientation of gramicidin A transmembrane channel. Infrared dichroism study of gramicidin in vesicles.
    Nabedryk E; Gingold MP; Breton J
    Biophys J; 1982 Jun; 38(3):243-9. PubMed ID: 6179549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinguishing transmembrane helices from peripheral helices by circular dichrosim.
    Fasman GD
    Biotechnol Appl Biochem; 1993 Oct; 18(2):111-38. PubMed ID: 8251110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies of peptides forming 3(10)- and alpha-helices and beta-bend ribbon structures in organic solution and in model biomembranes by Fourier transform infrared spectroscopy.
    Kennedy DF; Crisma M; Toniolo C; Chapman D
    Biochemistry; 1991 Jul; 30(26):6541-8. PubMed ID: 2054352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Secondary-structure analysis of alcohol-denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy.
    Matsuo K; Sakurada Y; Tate S; Namatame H; Taniguchi M; Gekko K
    Proteins; 2012 Jan; 80(1):281-93. PubMed ID: 22076921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Infrared spectroscopic discrimination between alpha- and 3(10)-helices in globular proteins. Reexamination of Amide I infrared bands of alpha-lactalbumin and their assignment to secondary structures.
    Prestrelski SJ; Byler DM; Thompson MP
    Int J Pept Protein Res; 1991 Jun; 37(6):508-12. PubMed ID: 1917308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A biophysical study of integral membrane protein folding.
    Hunt JF; Earnest TN; Bousché O; Kalghatgi K; Reilly K; Horváth C; Rothschild KJ; Engelman DM
    Biochemistry; 1997 Dec; 36(49):15156-76. PubMed ID: 9398244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short alanine-based peptides may form 3(10)-helices and not alpha-helices in aqueous solution.
    Miick SM; Martinez GV; Fiori WR; Todd AP; Millhauser GL
    Nature; 1992 Oct; 359(6396):653-5. PubMed ID: 1328890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circular dichroism studies of distorted alpha-helices, twisted beta-sheets, and beta turns.
    Manning MC; Illangasekare M; Woody RW
    Biophys Chem; 1988 Aug; 31(1-2):77-86. PubMed ID: 3233294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibrational circular dichroism in general anisotropic thin solid films: measurement and theoretical approach.
    Buffeteau T; Lagugné-Labarthet F; Sourisseau C
    Appl Spectrosc; 2005 Jun; 59(6):732-45. PubMed ID: 16053539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An infrared and circular dichroism combined approach to the analysis of protein secondary structure.
    Sarver RW; Krueger WC
    Anal Biochem; 1991 Nov; 199(1):61-7. PubMed ID: 1807162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orientation of the infrared transition moments for an alpha-helix.
    Marsh D; Müller M; Schmitt FJ
    Biophys J; 2000 May; 78(5):2499-510. PubMed ID: 10777747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.
    Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W
    J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Secondary structure analysis of individual transmembrane segments of the nicotinic acetylcholine receptor by circular dichroism and Fourier transform infrared spectroscopy.
    Corbin J; Méthot N; Wang HH; Baenziger JE; Blanton MP
    J Biol Chem; 1998 Jan; 273(2):771-7. PubMed ID: 9422730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. IR spectra of lens crystallins.
    Rózyczka J; Gutsze A
    Lens Eye Toxic Res; 1991; 8(2-3):217-28. PubMed ID: 1911637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.