BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 3004646)

  • 21. Quantitative electron microscopic study of immunoreactive somatostatin axons in the rat neostriatum.
    DiFiglia M; Aronin N
    Neurosci Lett; 1984 Sep; 50(1-3):325-31. PubMed ID: 6149504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adenosine deaminase and histidine decarboxylase coexist in certain neurons of the rat brain.
    Patel BT; Tudball N; Wada H; Watanabe T
    Neurosci Lett; 1986 Jan; 63(2):185-9. PubMed ID: 3513053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subicular efferents to histaminergic neurons in the posterior hypothalamic region of the rat studied with PHA-L tracing combined with histidine decarboxylase immunocytochemistry.
    Wouterlood FG; Tuinhof R
    J Hirnforsch; 1992; 33(4-5):451-65. PubMed ID: 1282532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The role of gastric mucosal histamine and histidine decarboxylase activity in acid secretion in rats].
    Yamauchi T
    Nihon Shokakibyo Gakkai Zasshi; 1984 Dec; 81(12):2905-13. PubMed ID: 6530798
    [No Abstract]   [Full Text] [Related]  

  • 25. Histamine synthesis in rat hypothalamus is not acutely regulated via histidine decarboxylase.
    Chudomelka PJ; Murrin LC
    Neurosci Lett; 1989 Dec; 107(1-3):216-20. PubMed ID: 2616033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organization of histaminergic fibers in the rat brain.
    Inagaki N; Yamatodani A; Ando-Yamamoto M; Tohyama M; Watanabe T; Wada H
    J Comp Neurol; 1988 Jul; 273(3):283-300. PubMed ID: 3062046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey.
    Smith Y; Bennett BD; Bolam JP; Parent A; Sadikot AF
    J Comp Neurol; 1994 Jun; 344(1):1-19. PubMed ID: 7914894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The GABA neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry.
    Ribak CE; Vaughn JE; Roberts E
    J Comp Neurol; 1979 Sep; 187(2):261-83. PubMed ID: 226567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron microscopic identification of histidine decarboxylase-containing endocrine cells of the rat gastric mucosa. An immunohistochemical analysis.
    Kubota H; Taguchi Y; Tohyama M; Matsuura N; Shiosaka S; Ishihara T; Watanabe T; Shiotani Y; Wada H
    Gastroenterology; 1984 Sep; 87(3):496-502. PubMed ID: 6378712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Histaminergic neuron system and its function.
    Wada H; Yamatodani A; Inagaki N; Itowi N; Wang NP; Fukui H
    Adv Exp Med Biol; 1988; 236():343-57. PubMed ID: 2907240
    [No Abstract]   [Full Text] [Related]  

  • 31. High levels of histidine decarboxylase in the striatum of mice and rats.
    Krusong K; Ercan-Sencicek AG; Xu M; Ohtsu H; Anderson GM; State MW; Pittenger C
    Neurosci Lett; 2011 May; 495(2):110-4. PubMed ID: 21440039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coexistence of adenosine deaminase, histidine decarboxylase, and glutamate decarboxylase in hypothalamic neurons of the rat.
    Senba E; Daddona PE; Watanabe T; Wu JY; Nagy JI
    J Neurosci; 1985 Dec; 5(12):3393-402. PubMed ID: 4078633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutamic acid decarboxylase and enkephalin immunoreactive axon terminals in the rat neostriatum synapse with striatonigral neurons.
    Aronin N; Chase K; DiFiglia M
    Brain Res; 1986 Feb; 365(1):151-8. PubMed ID: 3512036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decrease in histamine content and decarboxylase activities in an isolated area of the cerebral cortex of the cat.
    Barbin G; Hirsch JC; Garbarg M; Schwartz JC
    Brain Res; 1975 Jul; 92(1):170-4. PubMed ID: 1174944
    [No Abstract]   [Full Text] [Related]  

  • 35. Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker.
    Watanabe T; Taguchi Y; Shiosaka S; Tanaka J; Kubota H; Terano Y; Tohyama M; Wada H
    Brain Res; 1984 Mar; 295(1):13-25. PubMed ID: 6713171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrastructure of synaptic remodeling in piriform cortex of adult rats after neonatal olfactory bulb removal: an immunocytochemical study.
    Westenbroek RE; Westrum LE; Hendrickson AE; Wu JY
    J Comp Neurol; 1988 Aug; 274(3):334-46. PubMed ID: 3065368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hippocampal and midline thalamic fibers and terminals in relation to the choline acetyltransferase-immunoreactive neurons in nucleus accumbens of the rat: a light and electron microscopic study.
    Meredith GE; Wouterlood FG
    J Comp Neurol; 1990 Jun; 296(2):204-21. PubMed ID: 2358532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses.
    Phelps PE; Houser CR; Vaughn JE
    J Comp Neurol; 1985 Aug; 238(3):286-307. PubMed ID: 4044917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monoclonal antibody against L-histidine decarboxylase for localization of histaminergic cells.
    Pollard H; Pachot I; Schwartz JC
    Neurosci Lett; 1985 Feb; 54(1):53-8. PubMed ID: 2983268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections.
    Umbriaco D; Watkins KC; Descarries L; Cozzari C; Hartman BK
    J Comp Neurol; 1994 Oct; 348(3):351-73. PubMed ID: 7844253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.