These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30046472)

  • 1. Plasmonic thin film InP/graphene-based Schottky-junction solar cell using nanorods.
    Nematpour A; Nikoufard M
    J Adv Res; 2018 Mar; 10():15-20. PubMed ID: 30046472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Efficiency Crystalline Silicon-Based Solar Cells Using Textured TiO
    Elrashidi A; Elleithy K
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic and photonic enhancement of photovoltaic characteristics of indium-rich InGaN p-n junction solar cells.
    Kumawat UK; Das A; Kumar K; Dhawan A
    Opt Express; 2020 Apr; 28(8):11806-11821. PubMed ID: 32403684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells.
    Zhao Y; Chen F; Shen Q; Zhang L
    Appl Opt; 2012 Sep; 51(25):6245-51. PubMed ID: 22945173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles.
    Tan H; Santbergen R; Smets AH; Zeman M
    Nano Lett; 2012 Aug; 12(8):4070-6. PubMed ID: 22738234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D/3D graphene on h-BN interlayer-silicon solar cell with ZnO:Al buffer layer and enormous light captivation using Au/Ag NPs.
    Jabeen M; Haxha S
    Opt Express; 2020 Apr; 28(9):12709-12728. PubMed ID: 32403763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembled Monolayer of Wavelength-Scale Core-Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells.
    Dabirian A; Byranvand MM; Naqavi A; Kharat AN; Taghavinia N
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):247-55. PubMed ID: 26726990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance.
    Desta D; Ram SK; Rizzoli R; Bellettato M; Summonte C; Jeppesen BR; Jensen PB; Tsao YC; Wiggers H; Pereira RN; Balling P; Larsen AN
    Nanoscale; 2016 Jun; 8(23):12035-46. PubMed ID: 27244247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of nanostructured plasmonic back contacts for thin-film silicon solar cells.
    Paetzold UW; Moulin E; Pieters BE; Carius R; Rau U
    Opt Express; 2011 Nov; 19 Suppl 6():A1219-30. PubMed ID: 22109618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures.
    Abdellatif S; Kirah K; Ghannam R; Khalil AS; Anis W
    Appl Opt; 2015 Jun; 54(17):5534-41. PubMed ID: 26192857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Study and Experimental Realization of Nanostructured Back Reflectors with Reduced Parasitic Losses for Silicon Thin Film Solar Cells.
    Li Z; E R; Lu C; Prakoso AB; Foldyna M; Khoury R; Bulkin P; Wang J; Chen W; Johnson E; Cabarrocas PIR
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30126184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A graphene/single GaAs nanowire Schottky junction photovoltaic device.
    Luo Y; Yan X; Zhang J; Li B; Wu Y; Lu Q; Jin C; Zhang X; Ren X
    Nanoscale; 2018 May; 10(19):9212-9217. PubMed ID: 29726561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light trapping in thin-film silicon solar cells with submicron surface texture.
    Dewan R; Marinkovic M; Noriega R; Phadke S; Salleo A; Knipp D
    Opt Express; 2009 Dec; 17(25):23058-65. PubMed ID: 20052232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. III-nitride core–shell nanowire arrayed solar cells.
    Wierer JJ; Li Q; Koleske DD; Lee SR; Wang GT
    Nanotechnology; 2012 May; 23(19):194007. PubMed ID: 22539038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications.
    Buencuerpo J; Munioz-Camuniez LE; Dotor ML; Postigo PA
    Opt Express; 2012 Jul; 20 Suppl 4():A452-64. PubMed ID: 22828614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light trapping in ultrathin plasmonic solar cells.
    Ferry VE; Verschuuren MA; Li HB; Verhagen E; Walters RJ; Schropp RE; Atwater HA; Polman A
    Opt Express; 2010 Jun; 18 Suppl 2():A237-45. PubMed ID: 20588593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure.
    Chriki R; Yanai A; Shappir J; Levy U
    Opt Express; 2013 May; 21 Suppl 3():A382-91. PubMed ID: 24104425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.
    Le KQ; John S
    Opt Express; 2014 Jan; 22 Suppl 1():A1-12. PubMed ID: 24921986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell.
    Petterson MK; Lemaitre MG; Shen Y; Wadhwa P; Hou J; Vasilyeva SV; Kravchenko II; Rinzler AG
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21182-7. PubMed ID: 26352052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.