These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30046784)

  • 1. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems.
    Wang YI; Shuler ML
    Lab Chip; 2018 Aug; 18(17):2563-2574. PubMed ID: 30046784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems.
    Wang YI; Shuler ML
    Lab Chip; 2019 Aug; 19(15):2619. PubMed ID: 31264674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic chip with gravity-induced unidirectional flow for perfusion cell culture.
    Lee DW; Choi N; Sung JH
    Biotechnol Prog; 2019 Jan; 35(1):e2701. PubMed ID: 30294886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and demonstration of a pumpless 14 compartment microphysiological system.
    Miller PG; Shuler ML
    Biotechnol Bioeng; 2016 Oct; 113(10):2213-27. PubMed ID: 27070809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Use of a Pumpless Microfluidic Lymphatic Vessel Chip.
    Fathi P; Esch MB
    Methods Mol Biol; 2022; 2373():177-199. PubMed ID: 34520013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pump-Less Platform Enables Long-Term Recirculating Perfusion of 3D Printed Tubular Tissues.
    Zhang F; Lin DSY; Rajasekar S; Sotra A; Zhang B
    Adv Healthc Mater; 2023 Oct; 12(27):e2300423. PubMed ID: 37543836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pumpless microfluidic devices for generating healthy and diseased endothelia.
    Yang Y; Fathi P; Holland G; Pan D; Wang NS; Esch MB
    Lab Chip; 2019 Sep; 19(19):3212-3219. PubMed ID: 31455960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pump-less, recirculating organ-on-a-chip (rOoC) platform.
    Busek M; Aizenshtadt A; Koch T; Frank A; Delon L; Martinez MA; Golovin A; Dumas C; Stokowiec J; Gruenzner S; Melum E; Krauss S
    Lab Chip; 2023 Feb; 23(4):591-608. PubMed ID: 36655405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pumped and pumpless microphysiological systems to study (nano)therapeutics.
    Lee EJ; Krassin ZL; Abaci HE; Mahler GJ; Esch MB
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1911. PubMed ID: 37464464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gravity-driven microfluidic device placed on a slow-tilting table enables constant unidirectional perfusion culture of human induced pluripotent stem cells.
    Limjanthong N; Tohbaru Y; Okamoto T; Okajima R; Kusama Y; Kojima H; Fujimura A; Miyazaki T; Kanamori T; Sugiura S; Ohnuma K
    J Biosci Bioeng; 2023 Feb; 135(2):151-159. PubMed ID: 36586792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pumpless, unidirectional microphysiological system for testing metabolism-dependent chemotherapeutic toxicity.
    LaValley DJ; Miller PG; Shuler ML
    Biotechnol Prog; 2021 Mar; 37(2):e3105. PubMed ID: 33274840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfusion culture of endothelial cells under shear stress on microporous membrane in a pressure-driven microphysiological system.
    Sugiura S; Shin K; Kanamori T
    J Biosci Bioeng; 2023 Jan; 135(1):79-85. PubMed ID: 36253250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-contained, low-cost Body-on-a-Chip systems for drug development.
    Wang YI; Oleaga C; Long CJ; Esch MB; McAleer CW; Miller PG; Hickman JJ; Shuler ML
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1701-1713. PubMed ID: 29065797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips.
    Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD
    Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pumpless, modular, microphysiological systems enabling tunable perfusion for long-term cultivation of endothelialized lumens.
    Tronolone JJ; Lam J; Agrawal A; Sung K
    Biomed Microdevices; 2021 Apr; 23(2):25. PubMed ID: 33855605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiorgan microfluidic platform with breathable lung chamber for inhalation or intravenous drug screening and development.
    Miller PG; Chen CY; Wang YI; Gao E; Shuler ML
    Biotechnol Bioeng; 2020 Feb; 117(2):486-497. PubMed ID: 31608985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unlocking the Potential of Organ-on-Chip Models through Pumpless and Tubeless Microfluidics.
    Delon LC; Nilghaz A; Cheah E; Prestidge C; Thierry B
    Adv Healthc Mater; 2020 Jun; 9(11):e1901784. PubMed ID: 32342669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pumpless microfluidic device with open top cell culture under oscillatory shear stress.
    Chen Z; Zilberberg J; Lee W
    Biomed Microdevices; 2020 Aug; 22(3):58. PubMed ID: 32833129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-Driven Perfusion System to Control, Multiplex and Recirculate Cell Culture Medium for Organs-on-Chips.
    de Graaf MNS; Vivas A; van der Meer AD; Mummery CL; Orlova VV
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.