These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30047074)

  • 1. Using Skyline to Analyze Data-Containing Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry Dimensions.
    MacLean BX; Pratt BS; Egertson JD; MacCoss MJ; Smith RD; Baker ES
    J Am Soc Mass Spectrom; 2018 Nov; 29(11):2182-2188. PubMed ID: 30047074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions.
    Kirkwood KI; Pratt BS; Shulman N; Tamura K; MacCoss MJ; MacLean BX; Baker ES
    Nat Protoc; 2022 Nov; 17(11):2415-2430. PubMed ID: 35831612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimum collision energies for proteomics: The impact of ion mobility separation.
    Nagy K; Gellén G; Papp D; Schlosser G; Révész Á
    J Mass Spectrom; 2023 Sep; 58(9):e4957. PubMed ID: 37415399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies.
    Baker ES; Livesay EA; Orton DJ; Moore RJ; Danielson WF; Prior DC; Ibrahim YM; LaMarche BL; Mayampurath AM; Schepmoes AA; Hopkins DF; Tang K; Smith RD; Belov ME
    J Proteome Res; 2010 Feb; 9(2):997-1006. PubMed ID: 20000344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LC-IMS-MS Feature Finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets.
    Crowell KL; Slysz GW; Baker ES; LaMarche BL; Monroe ME; Ibrahim YM; Payne SH; Anderson GA; Smith RD
    Bioinformatics; 2013 Nov; 29(21):2804-5. PubMed ID: 24008421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive Three-Dimensional LC × LC × Ion Mobility Spectrometry Separation Combined with High-Resolution MS for the Analysis of Complex Samples.
    Venter P; Muller M; Vestner J; Stander MA; Tredoux AGJ; Pasch H; de Villiers A
    Anal Chem; 2018 Oct; 90(19):11643-11650. PubMed ID: 30193064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating lipid mediator structural complexity using ion mobility spectrometry combined with mass spectrometry.
    Kyle JE; Aly N; Zheng X; Burnum-Johnson KE; Smith RD; Baker ES
    Bioanalysis; 2018 Mar; 10(5):279-289. PubMed ID: 29494212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an Ion Mobility-Multiplexed Collision Induced Dissociation-Tandem Time-of-Flight Mass Spectrometry Approach.
    Ibrahim YM; Prior DC; Baker ES; Smith RD; Belov ME
    Int J Mass Spectrom; 2010 Jun; 293(1-3):34-44. PubMed ID: 20596241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry.
    Causon TJ; Hann S
    J Chromatogr A; 2015 Oct; 1416():47-56. PubMed ID: 26372446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.
    Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL
    J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Isotopologue Workflows and Simultaneous Multidimensional Separations to Detect, Identify, and Validate Metabolites in Untargeted Analyses.
    Dodds JN; Wang L; Patti GJ; Baker ES
    Anal Chem; 2022 Feb; 94(5):2527-2535. PubMed ID: 35089687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses.
    Zheng X; Wojcik R; Zhang X; Ibrahim YM; Burnum-Johnson KE; Orton DJ; Monroe ME; Moore RJ; Smith RD; Baker ES
    Annu Rev Anal Chem (Palo Alto Calif); 2017 Jun; 10(1):71-92. PubMed ID: 28301728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.
    Baglai A; Gargano AFG; Jordens J; Mengerink Y; Honing M; van der Wal S; Schoenmakers PJ
    J Chromatogr A; 2017 Dec; 1530():90-103. PubMed ID: 29146423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of capillary liquid chromatography-electrospray ionization ion mobility spectrometry with mass spectrometry detection.
    Matz LM; Dion HM; Hill HH
    J Chromatogr A; 2002 Feb; 946(1-2):59-68. PubMed ID: 11873983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing bottom-up and top-down proteomic measurements with ion mobility separations.
    Baker ES; Burnum-Johnson KE; Ibrahim YM; Orton DJ; Monroe ME; Kelly RT; Moore RJ; Zhang X; Théberge R; Costello CE; Smith RD
    Proteomics; 2015 Aug; 15(16):2766-76. PubMed ID: 26046661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Ion Mobility Spectrometry for Improving Constitutional Assignment in Natural Product Mixtures.
    Carnevale Neto F; Clark TN; Lopes NP; Linington RG
    J Nat Prod; 2022 Mar; 85(3):519-529. PubMed ID: 35235328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion Mobility Spectrometry and the Omics: Distinguishing Isomers, Molecular Classes and Contaminant Ions in Complex Samples.
    Burnum-Johnson KE; Zheng X; Dodds JN; Ash J; Fourches D; Nicora CD; Wendler JP; Metz TO; Waters KM; Jansson JK; Smith RD; Baker ES
    Trends Analyt Chem; 2019 Jul; 116():292-299. PubMed ID: 31798197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.
    Tomlinson-Phillips J; Wooten A; Kozole J; Deline J; Beresford P; Stairs J
    Talanta; 2014 Sep; 127():152-62. PubMed ID: 24913870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Evaluation of ion mobility spectrometry for the detection of mitragynine in kratom products".
    Fuenffinger N; Ritchie M; Ruth A; Gryniewicz-Ruzicka C
    J Pharm Biomed Anal; 2017 Feb; 134():282-286. PubMed ID: 27951469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing biological analyses with three dimensional field asymmetric ion mobility, low field drift tube ion mobility and mass spectrometry (μFAIMS/IMS-MS) separations.
    Zhang X; Ibrahim YM; Chen TC; Kyle JE; Norheim RV; Monroe ME; Smith RD; Baker ES
    Analyst; 2015 Oct; 140(20):6955-63. PubMed ID: 26140287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.