BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30047108)

  • 1. In silico identification and computational characterization of endogenous small interfering RNAs from diverse grapevine tissues and stages.
    Zhu X; Jiu S; Li X; Zhang K; Wang M; Wang C; Fang J
    Genes Genomics; 2018 Aug; 40(8):801-817. PubMed ID: 30047108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of small non-coding RNAs from grape.
    Carra A; Mica E; Gambino G; Pindo M; Moser C; Pè ME; Schubert A
    Plant J; 2009 Sep; 59(5):750-63. PubMed ID: 19453456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of trans-acting siRNAs and their regulatory cascades in grapevine.
    Zhang C; Li G; Wang J; Fang J
    Bioinformatics; 2012 Oct; 28(20):2561-8. PubMed ID: 22914222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.
    Hu H; Rashotte AM; Singh NK; Weaver DB; Goertzen LR; Singh SR; Locy RD
    PLoS One; 2015; 10(6):e0127468. PubMed ID: 26070200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small RNA and degradome deep sequencing reveal respective roles of cold-related microRNAs across Chinese wild grapevine and cultivated grapevine.
    Wang P; Yang Y; Shi H; Wang Y; Ren F
    BMC Genomics; 2019 Oct; 20(1):740. PubMed ID: 31615400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small RNA profiling of virus-infected grapevines: evidences for virus infection-associated and variety-specific miRNAs.
    Singh K; Talla A; Qiu W
    Funct Integr Genomics; 2012 Nov; 12(4):659-69. PubMed ID: 22903235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max.
    Zabala G; Campos E; Varala KK; Bloomfield S; Jones SI; Win H; Tuteja JH; Calla B; Clough SJ; Hudson M; Vodkin LO
    BMC Plant Biol; 2012 Oct; 12():177. PubMed ID: 23031057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis.
    Pantaleo V; Szittya G; Moxon S; Miozzi L; Moulton V; Dalmay T; Burgyan J
    Plant J; 2010 Jun; 62(6):960-76. PubMed ID: 20230504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenesis of trans-acting siRNAs, endogenous secondary siRNAs in plants.
    Yoshikawa M
    Genes Genet Syst; 2013; 88(2):77-84. PubMed ID: 23832299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification of the class III POD gene family and their expression profiling in grapevine (Vitis vinifera L).
    Xiao H; Wang C; Khan N; Chen M; Fu W; Guan L; Leng X
    BMC Genomics; 2020 Jun; 21(1):444. PubMed ID: 32600251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of endogenous small interfering RNAs from rice.
    Sunkar R; Girke T; Zhu JK
    Nucleic Acids Res; 2005; 33(14):4443-54. PubMed ID: 16077027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase.
    Wang C; Wang X; Kibet NK; Song C; Zhang C; Li X; Han J; Fang J
    Physiol Plant; 2011 Sep; 143(1):64-81. PubMed ID: 21496033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and functional prediction of cold-related long non-coding RNA (lncRNA) in grapevine.
    Wang P; Dai L; Ai J; Wang Y; Ren F
    Sci Rep; 2019 Apr; 9(1):6638. PubMed ID: 31036931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are ta-siRNAs only originated from the cleavage site of miRNA on its target RNAs and phased in 21-nt increments?
    Yu L; Meng Y; Shao C; Kahrizi D
    Gene; 2015 Sep; 569(1):127-35. PubMed ID: 26026904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiling New Small RNA Sequences.
    Tsuzuki M; Watanabe Y
    Methods Mol Biol; 2017; 1456():177-188. PubMed ID: 27770366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of miRNAs and associated gene targets in grapevine leafroll-associated virus 3-infected plants.
    Bester R; Burger JT; Maree HJ
    Arch Virol; 2017 Apr; 162(4):987-996. PubMed ID: 28025711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants.
    Deng P; Muhammad S; Cao M; Wu L
    Plant Biotechnol J; 2018 May; 16(5):965-975. PubMed ID: 29327403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRANS-ACTING SIRNA3-derived short interfering RNAs confer cleavage of mRNAs in rice.
    Luo L; Yang X; Guo M; Lan T; Yu Y; Mo B; Chen X; Gao L; Liu L
    Plant Physiol; 2022 Jan; 188(1):347-362. PubMed ID: 34599593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apple miRNAs and tasiRNAs with novel regulatory networks.
    Xia R; Zhu H; An YQ; Beers EP; Liu Z
    Genome Biol; 2012 Jun; 13(6):R47. PubMed ID: 22704043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development.
    Dotto MC; Petsch KA; Aukerman MJ; Beatty M; Hammell M; Timmermans MC
    PLoS Genet; 2014 Dec; 10(12):e1004826. PubMed ID: 25503246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.