These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30047177)

  • 1. Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae.
    Gattolin S; Cirilli M; Pacheco I; Ciacciulli A; Da Silva Linge C; Mauroux JB; Lambert P; Cammarata E; Bassi D; Pascal T; Rossini L
    Plant J; 2018 Oct; 96(2):358-371. PubMed ID: 30047177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Less is more: natural variation disrupting a miR172 gene at the di locus underlies the recessive double-flower trait in peach (P. persica L. Batsch).
    Cirilli M; Rossini L; Chiozzotto R; Baccichet I; Florio FE; Mazzaglia A; Turco S; Bassi D; Gattolin S
    BMC Plant Biol; 2022 Jul; 22(1):318. PubMed ID: 35786350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses.
    François L; Verdenaud M; Fu X; Ruleman D; Dubois A; Vandenbussche M; Bendahmane A; Raymond O; Just J; Bendahmane M
    Sci Rep; 2018 Aug; 8(1):12912. PubMed ID: 30150746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in orthologous PETALOSA TOE-type genes cause a dominant double-flower phenotype in phylogenetically distant eudicots.
    Gattolin S; Cirilli M; Chessa S; Stella A; Bassi D; Rossini L
    J Exp Bot; 2020 May; 71(9):2585-2595. PubMed ID: 31960023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small RNA and transcriptome deep sequencing proffers insight into floral gene regulation in Rosa cultivars.
    Kim J; Park JH; Lim CJ; Lim JY; Ryu JY; Lee BW; Choi JP; Kim WB; Lee HY; Choi Y; Kim D; Hur CG; Kim S; Noh YS; Shin C; Kwon SY
    BMC Genomics; 2012 Nov; 13():657. PubMed ID: 23171001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations overlying the miR172 target site of TOE-type genes are prime candidate variants for the double-flower trait in mei.
    Gattolin S; Calastri E; Tassone MR; Cirilli M
    Sci Rep; 2024 Mar; 14(1):7300. PubMed ID: 38538684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The MADS-box gene PpPI is a key regulator of the double-flower trait in peach.
    Cai Y; Wang L; Ogutu CO; Yang Q; Luo B; Liao L; Zheng B; Zhang R; Han Y
    Physiol Plant; 2021 Dec; 173(4):2119-2129. PubMed ID: 34537956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two loss-of-function alleles of the glutathione S-transferase (GST) gene cause anthocyanin deficiency in flower and fruit skin of peach (Prunus persica).
    Lu Z; Cao H; Pan L; Niu L; Wei B; Cui G; Wang L; Yao JL; Zeng W; Wang Z
    Plant J; 2021 Sep; 107(5):1320-1331. PubMed ID: 33964100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses.
    Otagaki S; Ogawa Y; Hibrand-Saint Oyant L; Foucher F; Kawamura K; Horibe T; Matsumoto S
    Plant Biol (Stuttg); 2015 Jul; 17(4):808-15. PubMed ID: 25545704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits.
    Hibrand Saint-Oyant L; Ruttink T; Hamama L; Kirov I; Lakhwani D; Zhou NN; Bourke PM; Daccord N; Leus L; Schulz D; Van de Geest H; Hesselink T; Van Laere K; Debray K; Balzergue S; Thouroude T; Chastellier A; Jeauffre J; Voisine L; Gaillard S; Borm TJA; Arens P; Voorrips RE; Maliepaard C; Neu E; Linde M; Le Paslier MC; Bérard A; Bounon R; Clotault J; Choisne N; Quesneville H; Kawamura K; Aubourg S; Sakr S; Smulders MJM; Schijlen E; Bucher E; Debener T; De Riek J; Foucher F
    Nat Plants; 2018 Jul; 4(7):473-484. PubMed ID: 29892093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses.
    Dubois A; Raymond O; Maene M; Baudino S; Langlade NB; Boltz V; Vergne P; Bendahmane M
    PLoS One; 2010 Feb; 5(2):e9288. PubMed ID: 20174587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetics and genomics of flower initiation and development in roses.
    Bendahmane M; Dubois A; Raymond O; Bris ML
    J Exp Bot; 2013 Feb; 64(4):847-57. PubMed ID: 23364936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis.
    Wang Q; Zhang X; Lin S; Yang S; Yan X; Bendahmane M; Bao M; Fu X
    J Exp Bot; 2020 Mar; 71(6):1915-1927. PubMed ID: 31990971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Di2/pet Variant in the PETALOSA Gene Underlies a Major Heat Requirement-Related QTL for Blooming Date in Peach [Prunus persica (L.) Batsch].
    Cirilli M; Gattolin S; Chiozzotto R; Baccichet I; Pascal T; Quilot-Turion BND; Rossini L; Bassi D
    Plant Cell Physiol; 2021 May; 62(2):356-365. PubMed ID: 33399872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative genomics approaches validate PpYUC11-like as candidate gene for the stony hard trait in peach (P. persica L. Batsch).
    Cirilli M; Giovannini D; Ciacciulli A; Chiozzotto R; Gattolin S; Rossini L; Liverani A; Bassi D
    BMC Plant Biol; 2018 May; 18(1):88. PubMed ID: 29776387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of WD40 superfamily genes in peach.
    Feng R; Zhang C; Ma R; Cai Z; Lin Y; Yu M
    Gene; 2019 Aug; 710():291-306. PubMed ID: 31185283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NLR1 is a strong candidate for the Rm3 dominant green peach aphid (Myzus persicae) resistance trait in peach.
    Pan L; Lu Z; Yan L; Zeng W; Shen Z; Yu M; Bu L; Cui G; Niu L; Wang Z
    J Exp Bot; 2022 Mar; 73(5):1357-1369. PubMed ID: 35022695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo chromosome-level genome of a semi-dwarf cultivar of Prunus persica identifies the aquaporin PpTIP2 as responsible for temperature-sensitive semi-dwarf trait and PpB3-1 for flower type and size.
    Lian X; Zhang H; Jiang C; Gao F; Yan L; Zheng X; Cheng J; Wang W; Wang X; Ye X; Li J; Zhang L; Li Z; Tan B; Feng J
    Plant Biotechnol J; 2022 May; 20(5):886-902. PubMed ID: 34919780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.
    Lü P; Zhang C; Liu J; Liu X; Jiang G; Jiang X; Khan MA; Wang L; Hong B; Gao J
    Plant J; 2014 May; 78(4):578-90. PubMed ID: 24589134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development.
    Wang T; Ping X; Cao Y; Jian H; Gao Y; Wang J; Tan Y; Xu X; Lu K; Li J; Liu L
    BMC Plant Biol; 2019 Aug; 19(1):336. PubMed ID: 31370790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.