These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 30047196)
1. Comparative genomics of a quadripartite symbiosis in a planthopper host reveals the origins and rearranged nutritional responsibilities of anciently diverged bacterial lineages. Bennett GM; Mao M Environ Microbiol; 2018 Dec; 20(12):4461-4472. PubMed ID: 30047196 [TBL] [Abstract][Full Text] [Related]
2. Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). Urban JM; Cryan JR BMC Evol Biol; 2012 Jun; 12():87. PubMed ID: 22697166 [TBL] [Abstract][Full Text] [Related]
3. Comparative Genomics of the Dual-Obligate Symbionts from the Treehopper, Entylia carinata (Hemiptera: Membracidae), Provide Insight into the Origins and Evolution of an Ancient Symbiosis. Mao M; Yang X; Poff K; Bennett G Genome Biol Evol; 2017 Jun; 9(6):1803-1815. PubMed ID: 28854637 [TBL] [Abstract][Full Text] [Related]
4. Localization and morphological variation of three bacteriome-inhabiting symbionts within a planthopper of the genus Oliarus (Hemiptera: Cixiidae). Bressan A; Mulligan KL Environ Microbiol Rep; 2013 Aug; 5(4):499-505. PubMed ID: 23864562 [TBL] [Abstract][Full Text] [Related]
5. Genomic Comparisons Reveal Selection Pressure and Functional Variation Between Nutritional Endosymbionts of Cave-Adapted and Epigean Hawaiian Planthoppers. Gossett JM; Porter ML; Vasquez YM; Bennett GM; Chong RA Genome Biol Evol; 2023 Mar; 15(3):. PubMed ID: 36864565 [TBL] [Abstract][Full Text] [Related]
6. Genome Comparison Reveals Inversions and Alternative Evolutionary History of Nutritional Endosymbionts in Planthoppers (Hemiptera: Fulgoromorpha). Deng J; Bennett GM; Franco DC; Prus-Frankowska M; Stroiński A; Michalik A; Łukasik P Genome Biol Evol; 2023 Jul; 15(7):. PubMed ID: 37392458 [TBL] [Abstract][Full Text] [Related]
7. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis. Bennett GM; McCutcheon JP; MacDonald BR; Romanovicz D; Moran NA mBio; 2014 Sep; 5(5):e01697-14. PubMed ID: 25271287 [TBL] [Abstract][Full Text] [Related]
8. Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Bressan A; Arneodo J; Simonato M; Haines WP; Boudon-Padieu E Environ Microbiol; 2009 Dec; 11(12):3265-79. PubMed ID: 19758348 [TBL] [Abstract][Full Text] [Related]
9. Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a Phloem-feeding insect. Bennett GM; Moran NA Genome Biol Evol; 2013; 5(9):1675-88. PubMed ID: 23918810 [TBL] [Abstract][Full Text] [Related]
10. Bacterial endosymbiont localization in Hyalesthes obsoletus, the insect vector of Bois noir in Vitis vinifera. Gonella E; Negri I; Marzorati M; Mandrioli M; Sacchi L; Pajoro M; Crotti E; Rizzi A; Clementi E; Tedeschi R; Bandi C; Alma A; Daffonchio D Appl Environ Microbiol; 2011 Feb; 77(4):1423-35. PubMed ID: 21183640 [TBL] [Abstract][Full Text] [Related]
11. Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Koga R; Bennett GM; Cryan JR; Moran NA Environ Microbiol; 2013 Jul; 15(7):2073-81. PubMed ID: 23574391 [TBL] [Abstract][Full Text] [Related]
12. Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Takiya DM; Tran PL; Dietrich CH; Moran NA Mol Ecol; 2006 Nov; 15(13):4175-91. PubMed ID: 17054511 [TBL] [Abstract][Full Text] [Related]
13. Alternative Transmission Patterns in Independently Acquired Nutritional Cosymbionts of Dictyopharidae Planthoppers. Michalik A; Castillo Franco D; Kobiałka M; Szklarzewicz T; Stroiński A; Łukasik P mBio; 2021 Aug; 12(4):e0122821. PubMed ID: 34465022 [TBL] [Abstract][Full Text] [Related]
14. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. McCutcheon JP; Moran NA Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19392-7. PubMed ID: 18048332 [TBL] [Abstract][Full Text] [Related]
15. The Cost of Metabolic Interactions in Symbioses between Insects and Bacteria with Reduced Genomes. Ankrah NYD; Chouaia B; Douglas AE mBio; 2018 Sep; 9(5):. PubMed ID: 30254121 [TBL] [Abstract][Full Text] [Related]
16. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Mao M; Yang X; Bennett GM Proc Natl Acad Sci U S A; 2018 Dec; 115(50):E11691-E11700. PubMed ID: 30463949 [TBL] [Abstract][Full Text] [Related]
17. Genome-Wide Transcriptional Dynamics in the Companion Bacterial Symbionts of the Glassy-Winged Sharpshooter (Cicadellidae: Bennett GM; Chong RA G3 (Bethesda); 2017 Sep; 7(9):3073-3082. PubMed ID: 28705905 [TBL] [Abstract][Full Text] [Related]
18. Cicada Endosymbionts Have tRNAs That Are Correctly Processed Despite Having Genomes That Do Not Encode All of the tRNA Processing Machinery. Van Leuven JT; Mao M; Xing DD; Bennett GM; McCutcheon JP mBio; 2019 Jun; 10(3):. PubMed ID: 31213566 [TBL] [Abstract][Full Text] [Related]
19. Variable organization of symbiont-containing tissue across planthoppers hosting different heritable endosymbionts. Michalik A; Franco DC; Deng J; Szklarzewicz T; Stroiński A; Kobiałka M; Łukasik P Front Physiol; 2023; 14():1135346. PubMed ID: 37035661 [TBL] [Abstract][Full Text] [Related]
20. Facultatively intrabacterial localization of a planthopper endosymbiont as an adaptation to its vertical transmission. Michalik A; C Franco D; Szklarzewicz T; Stroiński A; Łukasik P mSystems; 2024 Jul; 9(7):e0063424. PubMed ID: 38934538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]