These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 30047288)

  • 1. New Insights into the Neurobiology of Restless Legs Syndrome.
    Ferré S; García-Borreguero D; Allen RP; Earley CJ
    Neuroscientist; 2019 Apr; 25(2):113-125. PubMed ID: 30047288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neurophysiology of hyperarousal in restless legs syndrome: Hints for a role of glutamate/GABA.
    Lanza G; Ferri R
    Adv Pharmacol; 2019; 84():101-119. PubMed ID: 31229167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pivotal Role of Adenosine Neurotransmission in Restless Legs Syndrome.
    Ferré S; Quiroz C; Guitart X; Rea W; Seyedian A; Moreno E; Casadó-Anguera V; Díaz-Ríos M; Casadó V; Clemens S; Allen RP; Earley CJ; García-Borreguero D
    Front Neurosci; 2017; 11():722. PubMed ID: 29358902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Pathophysiology of restless legs syndrome].
    Miyamoto M; Miyamoto T; Iwanami M; Suzuki K; Hirata K
    Brain Nerve; 2009 May; 61(5):523-32. PubMed ID: 19514512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thalamic glutamate/glutamine in restless legs syndrome: increased and related to disturbed sleep.
    Allen RP; Barker PB; Horská A; Earley CJ
    Neurology; 2013 May; 80(22):2028-34. PubMed ID: 23624560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine receptors as markers of brain iron deficiency: Implications for Restless Legs Syndrome.
    Quiroz C; Gulyani S; Ruiqian W; Bonaventura J; Cutler R; Pearson V; Allen RP; Earley CJ; Mattson MP; Ferré S
    Neuropharmacology; 2016 Dec; 111():160-168. PubMed ID: 27600688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered brain iron homeostasis and dopaminergic function in Restless Legs Syndrome (Willis-Ekbom Disease).
    Earley CJ; Connor J; Garcia-Borreguero D; Jenner P; Winkelman J; Zee PC; Allen R
    Sleep Med; 2014 Nov; 15(11):1288-301. PubMed ID: 25201131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome.
    Rodrigues MS; Ferreira SG; Quiroz C; Earley CJ; García-Borreguero D; Cunha RA; Ciruela F; Köfalvi A; Ferré S
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron, dopamine, genetics, and hormones in the pathophysiology of restless legs syndrome.
    Khan FH; Ahlberg CD; Chow CA; Shah DR; Koo BB
    J Neurol; 2017 Aug; 264(8):1634-1641. PubMed ID: 28236139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Pathophysiology of restless legs syndrome].
    Monaca C
    Presse Med; 2010 May; 39(5):587-91. PubMed ID: 20346613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restless legs syndrome and central nervous system gamma-aminobutyric acid: preliminary associations with periodic limb movements in sleep and restless leg syndrome symptom severity.
    Winkelman JW; Schoerning L; Platt S; Jensen JE
    Sleep Med; 2014 Oct; 15(10):1225-30. PubMed ID: 25129262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restless Leg Syndrome/Willis-Ekbom Disease Pathophysiology.
    Allen RP
    Sleep Med Clin; 2015 Sep; 10(3):207-14, xi. PubMed ID: 26329430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The restless legs syndrome.
    Barrière G; Cazalets JR; Bioulac B; Tison F; Ghorayeb I
    Prog Neurobiol; 2005 Oct; 77(3):139-65. PubMed ID: 16300874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine mechanisms and hypersensitive corticostriatal terminals in restless legs syndrome. Rationale for the use of inhibitors of adenosine transport.
    Ferré S; Quiroz C; Rea W; Guitart X; García-Borreguero D
    Adv Pharmacol; 2019; 84():3-19. PubMed ID: 31229176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Molecular Genetics of Restless Legs Syndrome.
    Rye DB
    Sleep Med Clin; 2015 Sep; 10(3):227-33, xii. PubMed ID: 26329432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep fragmentation and motor restlessness in a Drosophila model of Restless Legs Syndrome.
    Freeman A; Pranski E; Miller RD; Radmard S; Bernhard D; Jinnah HA; Betarbet R; Rye DB; Sanyal S
    Curr Biol; 2012 Jun; 22(12):1142-8. PubMed ID: 22658601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-iron deficiency models of restless legs syndrome.
    Earley CJ; Jones BC; Ferré S
    Exp Neurol; 2022 Oct; 356():114158. PubMed ID: 35779614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In restless legs syndrome, during changes in vigilance, the forced EEG shifts from alpha activity to delta or high alpha may lead to the altered states of dopamine receptor function and the symptoms.
    Akpinar S; Aydin H; Kutukcu Y
    Med Hypotheses; 2007; 69(2):273-81. PubMed ID: 17320307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An update on the pathophysiology and genetics of restless legs syndrome.
    Trotti LM; Bhadriraju S; Rye DB
    Curr Neurol Neurosci Rep; 2008 Jul; 8(4):281-7. PubMed ID: 18590611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectome and molecular pharmacological differences in the dopaminergic system in restless legs syndrome (RLS): plastic changes and neuroadaptations that may contribute to augmentation.
    Earley CJ; Uhl GR; Clemens S; Ferré S
    Sleep Med; 2017 Mar; 31():71-77. PubMed ID: 27539027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.