BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 30047485)

  • 21. Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel.
    Li S; Wang Q; Chen T; Zhou Z; Wang Y; Fu J
    Nanoscale Res Lett; 2012 Apr; 7(1):227. PubMed ID: 22515192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AgInS
    Li H; Song W; Cui X; Li Y; Hou B; Zhang X; Wang Y; Cheng L; Zhang P; Li J
    Nanotechnology; 2020 Jul; 31(30):305704. PubMed ID: 32240986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A facile one-step electrochemical strategy of doping iron, nitrogen, and fluorine into titania nanotube arrays with enhanced visible light photoactivity.
    Hua Z; Dai Z; Bai X; Ye Z; Gu H; Huang X
    J Hazard Mater; 2015 Aug; 293():112-21. PubMed ID: 25855568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electroless deposition of Pd/Pt nanoparticles on electrochemically grown TiO
    Bindra P; Hazra A
    Analyst; 2021 Mar; 146(6):1880-1891. PubMed ID: 33475622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hall measurements on carbon nanotube paper modified with electroless deposited platinum.
    Petrik L; Ndungu P; Iwuoha E
    Nanoscale Res Lett; 2009 Sep; 5(1):38-47. PubMed ID: 20651913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and Photocathodic Protection Properties of ZnO/TiO
    Zhang X; Chen G; Li W; Wu D
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31766639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Secondary Phase on Electroless Ni Plating Behaviour of Super Duplex Stainless Steel SAF2507 for Advanced Li-Ion Battery Case.
    Shin BH; Kim S; Park J; Ok JW; Kim DI; Kim D; Yoon JH
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The fabrication of highly ordered and visible-light-responsive Fe-C-N-codoped TiO2 nanotubes.
    Isimjan TT; Ruby AE; Rohani S; Ray AK
    Nanotechnology; 2010 Feb; 21(5):055706. PubMed ID: 20023311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ deposition of Ag-Ag2S hybrid nanoparticles onto TiO2 nanotube arrays towards fabrication of photoelectrodes with high visible light photoelectrochemical properties.
    Fan W; Jewell S; She Y; Leung MK
    Phys Chem Chem Phys; 2014 Jan; 16(2):676-80. PubMed ID: 24270769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron Modified Titanate Nanotube Arrays for Photoelectrochemical Removal of
    Chen CH; Peng YP; Lin MH; Chang KL; Lin YC; Sun J
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. WO3-enhanced TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment.
    Reyes-Gil KR; Robinson DB
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12400-10. PubMed ID: 24195676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering.
    Huang T; Cheng J; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():43-53. PubMed ID: 24411350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells.
    Zhang C; Yu H; Li Y; Gao Y; Zhao Y; Song W; Shao Z; Yi B
    ChemSusChem; 2013 Apr; 6(4):659-66. PubMed ID: 23450835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of Carbon Nanotube-Nanotubular Titania Composites by Catalyst-Free CVD Process: Insights into the Formation Mechanism and Photocatalytic Properties.
    Alsawat M; Altalhi T; Gulati K; Santos A; Losic D
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28361-8. PubMed ID: 26587676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A highly efficient In
    Li H; Yang Z; Cui X; Li Y; Zhang P; Li J
    Nanotechnology; 2022 Nov; 34(4):. PubMed ID: 36301697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasound-assisted synthesis and visible-light-driven photocatalytic activity of Fe-incorporated TiO2 nanotube array photocatalysts.
    Wu Q; Ouyang J; Xie K; Sun L; Wang M; Lin C
    J Hazard Mater; 2012 Jan; 199-200():410-7. PubMed ID: 22118853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications.
    Li S; Qiu J; Ling M; Peng F; Wood B; Zhang S
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11129-35. PubMed ID: 24083843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoelectrochemical properties and the detection mechanism of Bi2WO6 nanosheet modified TiO2 nanotube arrays.
    Pang Y; Xu G; Zhang X; Lv J; Shi K; Zhai P; Xue Q; Wang X; Wu Y
    Dalton Trans; 2015 Oct; 44(40):17784-94. PubMed ID: 26400480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.
    Ruan C; Paulose M; Varghese OK; Mor GK; Grimes CA
    J Phys Chem B; 2005 Aug; 109(33):15754-9. PubMed ID: 16852999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical Studies of Stainless Steel and Stainless Steel-TiO
    Malczyk P; Mandel M; Zienert T; Weigelt C; Krüger L; Hubalkova J; Schmidt G; Aneziris CG
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.