BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30047562)

  • 21. The ABCDs of periplasmic copper trafficking.
    Puig S; Rees EM; Thiele DJ
    Structure; 2002 Oct; 10(10):1292-5. PubMed ID: 12377116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osmotolerance in Escherichia coli Is Improved by Activation of Copper Efflux Genes or Supplementation with Sulfur-Containing Amino Acids.
    Xiao M; Zhu X; Fan F; Xu H; Tang J; Qin Y; Ma Y; Zhang X
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28115377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper ATPase CopA from Escherichia coli: Quantitative Correlation between ATPase Activity and Vectorial Copper Transport.
    Wijekoon CJ; Udagedara SR; Knorr RL; Dimova R; Wedd AG; Xiao Z
    J Am Chem Soc; 2017 Mar; 139(12):4266-4269. PubMed ID: 28272878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of copper resistance in a copper mine isolate Pseudomonas putida strain S4.
    Saxena D; Joshi N; Srivastava S
    Curr Microbiol; 2002 Dec; 45(6):410-4. PubMed ID: 12402081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli.
    Franke S; Grass G; Rensing C; Nies DH
    J Bacteriol; 2003 Jul; 185(13):3804-12. PubMed ID: 12813074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptor protein mediates dynamic pump assembly for bacterial metal efflux.
    Santiago AG; Chen TY; Genova LA; Jung W; George Thompson AM; McEvoy MM; Chen P
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):6694-6699. PubMed ID: 28607072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Pco proteins are involved in periplasmic copper handling in Escherichia coli.
    Lee SM; Grass G; Rensing C; Barrett SR; Yates CJ; Stoyanov JV; Brown NL
    Biochem Biophys Res Commun; 2002 Jul; 295(3):616-20. PubMed ID: 12099683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advances in Understanding of the Copper Homeostasis in
    Hofmann L; Hirsch M; Ruthstein S
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial Cu(+)-ATPases: models for molecular structure-function studies.
    Argüello JM; Patel SJ; Quintana J
    Metallomics; 2016 Sep; 8(9):906-14. PubMed ID: 27465346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase.
    Rensing C; Fan B; Sharma R; Mitra B; Rosen BP
    Proc Natl Acad Sci U S A; 2000 Jan; 97(2):652-6. PubMed ID: 10639134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Glutathione in Buffering Excess Intracellular Copper in
    Stewart LJ; Ong CY; Zhang MM; Brouwer S; McIntyre L; Davies MR; Walker MJ; McEwan AG; Waldron KJ; Djoko KY
    mBio; 2020 Dec; 11(6):. PubMed ID: 33262259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CtpA, a copper-translocating P-type ATPase involved in the biogenesis of multiple copper-requiring enzymes.
    Hassani BK; Astier C; Nitschke W; Ouchane S
    J Biol Chem; 2010 Jun; 285(25):19330-7. PubMed ID: 20363758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron acquisition in Pseudomonas aeruginosa by the siderophore pyoverdine: an intricate interacting network including periplasmic and membrane proteins.
    Bonneau A; Roche B; Schalk IJ
    Sci Rep; 2020 Jan; 10(1):120. PubMed ID: 31924850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compartment and signal-specific codependence in the transcriptional control of Salmonella periplasmic copper homeostasis.
    Pezza A; Pontel LB; López C; Soncini FC
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):11573-11578. PubMed ID: 27679850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comprehensive phylogenetic analysis of copper transporting P
    Cubillas C; Miranda-Sánchez F; González-Sánchez A; Elizalde JP; Vinuesa P; Brom S; García-de Los Santos A
    Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28217917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems.
    Hirth N; Gerlach MS; Wiesemann N; Herzberg M; Große C; Nies DH
    Appl Environ Microbiol; 2023 Jun; 89(6):e0056723. PubMed ID: 37191542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cooperation between two periplasmic copper chaperones is required for full activity of the cbb3 -type cytochrome c oxidase and copper homeostasis in Rhodobacter capsulatus.
    Trasnea PI; Utz M; Khalfaoui-Hassani B; Lagies S; Daldal F; Koch HG
    Mol Microbiol; 2016 Apr; 100(2):345-61. PubMed ID: 26718481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A periplasmic cupredoxin with a green CuT1.5 center is involved in bacterial copper tolerance.
    Durand A; Fouesnard M; Bourbon ML; Steunou AS; Lojou E; Dorlet P; Ouchane S
    Metallomics; 2021 Dec; 13(12):. PubMed ID: 34791351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copper efflux is induced during anaerobic amino acid limitation in Escherichia coli to protect iron-sulfur cluster enzymes and biogenesis.
    Fung DK; Lau WY; Chan WT; Yan A
    J Bacteriol; 2013 Oct; 195(20):4556-68. PubMed ID: 23893112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni.
    Hall SJ; Hitchcock A; Butler CS; Kelly DJ
    J Bacteriol; 2008 Dec; 190(24):8075-85. PubMed ID: 18931123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.