These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30047562)

  • 41. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies.
    Maung MT; Carlson A; Olea-Flores M; Elkhadragy L; Schachtschneider KM; Navarro-Tito N; Padilla-Benavides T
    FASEB J; 2021 Sep; 35(9):e21810. PubMed ID: 34390520
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
    González-Guerrero M; Argüello JM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The copper supply pathway to a Salmonella Cu,Zn-superoxide dismutase (SodCII) involves P(1B)-type ATPase copper efflux and periplasmic CueP.
    Osman D; Patterson CJ; Bailey K; Fisher K; Robinson NJ; Rigby SE; Cavet JS
    Mol Microbiol; 2013 Feb; 87(3):466-77. PubMed ID: 23171030
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli.
    Grillo-Puertas M; Schurig-Briccio LA; Rodríguez-Montelongo L; Rintoul MR; Rapisarda VA
    BMC Microbiol; 2014 Mar; 14():72. PubMed ID: 24645672
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding.
    González-Guerrero M; Hong D; Argüello JM
    J Biol Chem; 2009 Jul; 284(31):20804-11. PubMed ID: 19525226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Programmed Ribosomal Frameshifting Generates a Copper Transporter and a Copper Chaperone from the Same Gene.
    Meydan S; Klepacki D; Karthikeyan S; Margus T; Thomas P; Jones JE; Khan Y; Briggs J; Dinman JD; Vázquez-Laslop N; Mankin AS
    Mol Cell; 2017 Jan; 65(2):207-219. PubMed ID: 28107647
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways.
    Schalk IJ; Guillon L
    Amino Acids; 2013 May; 44(5):1267-77. PubMed ID: 23443998
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of copper transport crossing brain barrier systems by Cu-ATPases: effect of manganese exposure.
    Fu X; Zhang Y; Jiang W; Monnot AD; Bates CA; Zheng W
    Toxicol Sci; 2014 Jun; 139(2):432-51. PubMed ID: 24614235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distinct functions of serial metal-binding domains in the Escherichia coli P1 B -ATPase CopA.
    Drees SL; Beyer DF; Lenders-Lomscher C; Lübben M
    Mol Microbiol; 2015 Aug; 97(3):423-38. PubMed ID: 25899340
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The mechanism of Cu+ transport ATPases: interaction with CU+ chaperones and the role of transient metal-binding sites.
    Padilla-Benavides T; McCann CJ; Argüello JM
    J Biol Chem; 2013 Jan; 288(1):69-78. PubMed ID: 23184962
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation.
    Yeterian E; Martin LW; Guillon L; Journet L; Lamont IL; Schalk IJ
    Amino Acids; 2010 May; 38(5):1447-59. PubMed ID: 19787431
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal-induced sensor mobilization turns on affinity to activate regulator for metal detoxification in live bacteria.
    Fu B; Sengupta K; Genova LA; Santiago AG; Jung W; Krzemiński Ł; Chakraborty UK; Zhang W; Chen P
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13248-13255. PubMed ID: 32467170
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression and physiological role of three Myxococcus xanthus copper-dependent P1B-type ATPases during bacterial growth and development.
    Moraleda-Muñoz A; Pérez J; Extremera AL; Muñoz-Dorado J
    Appl Environ Microbiol; 2010 Sep; 76(18):6077-84. PubMed ID: 20656859
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF.
    Vergnes A; Henry C; Grassini G; Loiseau L; El Hajj S; Denis Y; Galinier A; Vertommen D; Aussel L; Ezraty B
    PLoS Genet; 2022 Jul; 18(7):e1010180. PubMed ID: 35816552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport.
    Long F; Su CC; Zimmermann MT; Boyken SE; Rajashankar KR; Jernigan RL; Yu EW
    Nature; 2010 Sep; 467(7314):484-8. PubMed ID: 20865003
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase.
    Fan B; Rosen BP
    J Biol Chem; 2002 Dec; 277(49):46987-92. PubMed ID: 12351646
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice.
    Schwan WR; Warrener P; Keunz E; Stover CK; Folger KR
    Int J Med Microbiol; 2005 Aug; 295(4):237-42. PubMed ID: 16128398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria.
    Pontel LB; Soncini FC
    Mol Microbiol; 2009 Jul; 73(2):212-25. PubMed ID: 19538445
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crystal structure of LptH, the periplasmic component of the lipopolysaccharide transport machinery from Pseudomonas aeruginosa.
    Bollati M; Villa R; Gourlay LJ; Benedet M; Dehò G; Polissi A; Barbiroli A; Martorana AM; Sperandeo P; Bolognesi M; Nardini M
    FEBS J; 2015 May; 282(10):1980-97. PubMed ID: 25735820
    [TBL] [Abstract][Full Text] [Related]  

  • 60. c-Type Cytochrome Assembly Is a Key Target of Copper Toxicity within the Bacterial Periplasm.
    Durand A; Azzouzi A; Bourbon ML; Steunou AS; Liotenberg S; Maeshima A; Astier C; Argentini M; Saito S; Ouchane S
    mBio; 2015 Sep; 6(5):e01007-15. PubMed ID: 26396241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.