These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 30047726)
1. Electrodeposited Gold on Carbon-Fiber Microelectrodes for Enhancing Amperometric Detection of Dopamine Release from Pheochromocytoma Cells. Barlow ST; Louie M; Hao R; Defnet PA; Zhang B Anal Chem; 2018 Aug; 90(16):10049-10055. PubMed ID: 30047726 [TBL] [Abstract][Full Text] [Related]
2. Highly sensitive detection of exocytotic dopamine release using a gold-nanoparticle-network microelectrode. Adams KL; Jena BK; Percival SJ; Zhang B Anal Chem; 2011 Feb; 83(3):920-7. PubMed ID: 21175175 [TBL] [Abstract][Full Text] [Related]
3. Evaluating the diffusion coefficient of dopamine at the cell surface during amperometric detection: disk vs ring microelectrodes. Trouillon R; Lin Y; Mellander LJ; Keighron JD; Ewing AG Anal Chem; 2013 Jul; 85(13):6421-8. PubMed ID: 23706095 [TBL] [Abstract][Full Text] [Related]
4. Ultrasonic-Aided Fabrication of Nanostructured Au-Ring Microelectrodes for Monitoring Transmitters Released from Single Cells. Wang K; Zhao X; Li B; Wang K; Zhang X; Mao L; Ewing A; Lin Y Anal Chem; 2017 Sep; 89(17):8683-8688. PubMed ID: 28787575 [TBL] [Abstract][Full Text] [Related]
5. Optimized Fabrication of Carbon-Fiber Microbiosensors for Codetection of Glucose and Dopamine in Brain Tissue. Forderhase AG; Ligons LA; Norwood E; McCarty GS; Sombers LA ACS Sens; 2024 May; 9(5):2662-2672. PubMed ID: 38689483 [TBL] [Abstract][Full Text] [Related]
6. Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations. Sasso L; Heiskanen A; Diazzi F; Dimaki M; Castillo-León J; Vergani M; Landini E; Raiteri R; Ferrari G; Carminati M; Sampietro M; Svendsen WE; Emnéus J Analyst; 2013 Jul; 138(13):3651-9. PubMed ID: 23628978 [TBL] [Abstract][Full Text] [Related]
7. Carbon fiber ultramicrodic electrode electrodeposited with over-oxidized polypyrrole for amperometric detection of vesicular exocytosis from pheochromocytoma cell. Wang L; Xu H; Song Y; Luo J; Xu S; Zhang S; Liu J; Cai X Sensors (Basel); 2015 Jan; 15(1):868-79. PubMed ID: 25569759 [TBL] [Abstract][Full Text] [Related]
8. An Ultramicroelectrode Electrochemistry and Surface Plasmon Resonance Coupling Method for Cell Exocytosis Study. Zhao R; Yan B; Li D; Guo Z; Huang Y; Wang D; Yao X Anal Chem; 2024 Jun; 96(25):10228-10236. PubMed ID: 38867346 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical measurement of quantal exocytosis using microchips. Gillis KD; Liu XA; Marcantoni A; Carabelli V Pflugers Arch; 2018 Jan; 470(1):97-112. PubMed ID: 28866728 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical monitoring of individual exocytotic events from the varicosities of differentiated PC12 cells. Zerby SE; Ewing AG Brain Res; 1996 Mar; 712(1):1-10. PubMed ID: 8705289 [TBL] [Abstract][Full Text] [Related]
11. Carbon fiber nanoelectrodes applied to microchip electrophoresis amperometric detection of neurotransmitter dopamine in rat pheochromocytoma (PC12) cells. Cheng H; Huang WH; Chen RS; Wang ZL; Cheng JK Electrophoresis; 2007 May; 28(10):1579-86. PubMed ID: 17447239 [TBL] [Abstract][Full Text] [Related]
12. Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Kozminski KD; Gutman DA; Davila V; Sulzer D; Ewing AG Anal Chem; 1998 Aug; 70(15):3123-30. PubMed ID: 11013717 [TBL] [Abstract][Full Text] [Related]
13. Quantitative chemical analysis of single cells. Heien ML; Ewing AG Methods Mol Biol; 2009; 544():153-62. PubMed ID: 19488699 [TBL] [Abstract][Full Text] [Related]
14. Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays. Zhang B; Heien ML; Santillo MF; Mellander L; Ewing AG Anal Chem; 2011 Jan; 83(2):571-7. PubMed ID: 21190375 [TBL] [Abstract][Full Text] [Related]
15. Natural Leukocyte Membrane-Masked Microelectrodes with an Enhanced Antifouling Ability and Biocompatibility for Wei H; Wu F; Li L; Yang X; Xu C; Yu P; Ma F; Mao L Anal Chem; 2020 Aug; 92(16):11374-11379. PubMed ID: 32664720 [TBL] [Abstract][Full Text] [Related]
16. Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes. Qi L; Thomas E; White SH; Smith SK; Lee CA; Wilson LR; Sombers LA Anal Chem; 2016 Aug; 88(16):8129-36. PubMed ID: 27441547 [TBL] [Abstract][Full Text] [Related]
17. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells. Spégel C; Heiskanen A; Pedersen S; Emnéus J; Ruzgas T; Taboryski R Lab Chip; 2008 Feb; 8(2):323-9. PubMed ID: 18231673 [TBL] [Abstract][Full Text] [Related]
18. L-3,4-dihydroxyphenylalanine increases the quantal size of exocytotic dopamine release in vitro. Pothos E; Desmond M; Sulzer D J Neurochem; 1996 Feb; 66(2):629-36. PubMed ID: 8592133 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Disk and Nanotip Electrodes for Measurement of Single-Cell Amperometry during Exocytotic Release. Gu C; Zhang X; Ewing AG Anal Chem; 2020 Aug; 92(15):10268-10273. PubMed ID: 32628468 [TBL] [Abstract][Full Text] [Related]
20. Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at the zeptomole level. Chen TK; Luo G; Ewing AG Anal Chem; 1994 Oct; 66(19):3031-5. PubMed ID: 7978300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]