These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30047752)

  • 1. Remembering to execute deferred tasks in simulated air traffic control: The impact of interruptions.
    Wilson MD; Farrell S; Visser TAW; Loft S
    J Exp Psychol Appl; 2018 Sep; 24(3):360-379. PubMed ID: 30047752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospective Memory Performance in Simulated Air Traffic Control : Robust to Interruptions but Impaired by Retention Interval.
    Wilson MK; Strickland L; Farrell S; Visser TAW; Loft S
    Hum Factors; 2020 Dec; 62(8):1249-1264. PubMed ID: 31539282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using spatial context to support prospective memory in simulated air traffic control.
    Loft S; Finnerty D; Remington RW
    Hum Factors; 2011 Dec; 53(6):662-71. PubMed ID: 22235528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing prospective memory error and costs in simulated air traffic control: External aids, extending practice, and removing perceived memory requirements.
    Loft S; Chapman M; Smith RE
    J Exp Psychol Appl; 2016 Sep; 22(3):272-84. PubMed ID: 27608067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of alerting designs on air traffic controller's eye movement patterns and situation awareness.
    Kearney P; Li WC; Yu CS; Braithwaite G
    Ergonomics; 2019 Feb; 62(2):305-318. PubMed ID: 29943681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Not Now! Supporting interruption management by indicating the modality and urgency of pending tasks.
    Ho CY; Nikolic MI; Waters MJ; Sarter NB
    Hum Factors; 2004; 46(3):399-409. PubMed ID: 15573541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative position vectors: an alternative approach to conflict detection in air traffic control.
    Vuckovic A; Sanderson P; Neal A; Gaukrodger S; Wong BL
    Hum Factors; 2013 Oct; 55(5):946-64. PubMed ID: 24218904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimizing the disruptive effects of prospective memory in simulated air traffic control.
    Loft S; Smith RE; Remington RW
    J Exp Psychol Appl; 2013 Sep; 19(3):254-65. PubMed ID: 24059825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective memory in an air traffic control simulation: external aids that signal when to act.
    Loft S; Smith RE; Bhaskara A
    J Exp Psychol Appl; 2011 Mar; 17(1):60-70. PubMed ID: 21443381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATC-lab: an air traffic control simulator for the laboratory.
    Loft S; Hill A; Neal A; Humphreys M; Yeo G
    Behav Res Methods Instrum Comput; 2004 May; 36(2):331-8. PubMed ID: 15354699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Chronic Detrimental Impact of Interruptions in a Simulated Submarine Track Management Task.
    Loft S; Sadler A; Braithwaite J; Huf S
    Hum Factors; 2015 Dec; 57(8):1417-26. PubMed ID: 26314878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using memory for prior aircraft events to detect conflicts under conditions of proactive air traffic control and with concurrent task requirements.
    Bowden VK; Loft S
    J Exp Psychol Appl; 2016 Jun; 22(2):211-24. PubMed ID: 27295467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human factors assessment of conflict resolution aid reliability and time pressure in future air traffic control.
    Trapsilawati F; Qu X; Wickens CD; Chen CH
    Ergonomics; 2015; 58(6):897-908. PubMed ID: 25600496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of different distractions on remembering delayed intentions.
    Schaper P; Grundgeiger T
    Memory; 2018 Feb; 26(2):154-170. PubMed ID: 28609208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection efficiency on an air traffic control monitoring task with and without computer aiding.
    Thackray RI; Touchstone RM
    Aviat Space Environ Med; 1989 Aug; 60(8):744-8. PubMed ID: 2775130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-task cue utilisation and situational awareness in simulated air traffic control.
    Falkland EC; Wiggins MW
    Appl Ergon; 2019 Jan; 74():24-30. PubMed ID: 30487105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using multisensory cues to facilitate air traffic management.
    Ngo MK; Pierce RS; Spence C
    Hum Factors; 2012 Dec; 54(6):1093-103. PubMed ID: 23397817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Procedural errors in air traffic control: effects of traffic density, expertise, and automation.
    Di Nocera F; Fabrizi R; Terenzi M; Ferlazzo F
    Aviat Space Environ Med; 2006 Jun; 77(6):639-43. PubMed ID: 16780243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual differences in working-memory capacity and task resumption following interruptions.
    Foroughi CK; Werner NE; McKendrick R; Cades DM; Boehm-Davis DA
    J Exp Psychol Learn Mem Cogn; 2016 Sep; 42(9):1480-8. PubMed ID: 26882286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Nested Interruptions on Task Resumption: A Laboratory Study With Intensive Care Nurses.
    Sasangohar F; Donmez B; Easty AC; Trbovich PL
    Hum Factors; 2017 Jun; 59(4):628-639. PubMed ID: 28128985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.