These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30047755)

  • 1. Improving motivation through real-time fMRI-based self-regulation of the nucleus accumbens.
    Li Z; Zhang CY; Huang J; Wang Y; Yan C; Li K; Zeng YW; Jin Z; Cheung EFC; Su L; Chan RCK
    Neuropsychology; 2018 Sep; 32(6):764-776. PubMed ID: 30047755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of nucleus accumbens activity with neurofeedback.
    Greer SM; Trujillo AJ; Glover GH; Knutson B
    Neuroimage; 2014 Aug; 96():237-44. PubMed ID: 24705203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback.
    Lawrence EJ; Su L; Barker GJ; Medford N; Dalton J; Williams SC; Birbaumer N; Veit R; Ranganatha S; Bodurka J; Brammer M; Giampietro V; David AS
    Neuroimage; 2014 Mar; 88():113-24. PubMed ID: 24231399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-regulation of ventromedial prefrontal cortex activation using real-time fMRI neurofeedback-Influence of default mode network.
    Mayeli A; Misaki M; Zotev V; Tsuchiyagaito A; Al Zoubi O; Phillips R; Smith J; Stewart JL; Refai H; Paulus MP; Bodurka J
    Hum Brain Mapp; 2020 Feb; 41(2):342-352. PubMed ID: 31633257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Functional Connectivity-Informed Neurofeedback of Amygdala-Frontal Pathways Reduces Anxiety.
    Zhao Z; Yao S; Li K; Sindermann C; Zhou F; Zhao W; Li J; Lührs M; Goebel R; Kendrick KM; Becker B
    Psychother Psychosom; 2019; 88(1):5-15. PubMed ID: 30699438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nucleus accumbens is involved in both the pursuit of social reward and the avoidance of social punishment.
    Kohls G; Perino MT; Taylor JM; Madva EN; Cayless SJ; Troiani V; Price E; Faja S; Herrington JD; Schultz RT
    Neuropsychologia; 2013 Sep; 51(11):2062-9. PubMed ID: 23911778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-regulation of inter-hemispheric visual cortex balance through real-time fMRI neurofeedback training.
    Robineau F; Rieger SW; Mermoud C; Pichon S; Koush Y; Van De Ville D; Vuilleumier P; Scharnowski F
    Neuroimage; 2014 Oct; 100():1-14. PubMed ID: 24904993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-resolution fMRI approach to characterize functionally distinct neural pathways within dopaminergic midbrain and nucleus accumbens during reward and salience processing.
    Richter A; Reinhard F; Kraemer B; Gruber O
    Eur Neuropsychopharmacol; 2020 Jul; 36():137-150. PubMed ID: 32546416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.
    MacInnes JJ; Dickerson KC; Chen NK; Adcock RA
    Neuron; 2016 Mar; 89(6):1331-1342. PubMed ID: 26948894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment.
    Oblak EF; Lewis-Peacock JA; Sulzer JS
    PLoS Comput Biol; 2017 Jul; 13(7):e1005681. PubMed ID: 28753639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward-related regions form a preferentially coupled system at rest.
    Huckins JF; Adeyemo B; Miezin FM; Power JD; Gordon EM; Laumann TO; Heatherton TF; Petersen SE; Kelley WM
    Hum Brain Mapp; 2019 Feb; 40(2):361-376. PubMed ID: 30251766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural substrates of the impaired effort expenditure decision making in schizophrenia.
    Huang J; Yang XH; Lan Y; Zhu CY; Liu XQ; Wang YF; Cheung EF; Xie GR; Chan RC
    Neuropsychology; 2016 Sep; 30(6):685-96. PubMed ID: 27054437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When the Brain Takes 'BOLD' Steps: Real-Time fMRI Neurofeedback Can Further Enhance the Ability to Gradually Self-regulate Regional Brain Activation.
    Sorger B; Kamp T; Weiskopf N; Peters JC; Goebel R
    Neuroscience; 2018 May; 378():71-88. PubMed ID: 27659118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of successful learning of self-regulation on reward processing in children with ADHD using fMRI.
    Baumeister S; Wolf I; Hohmann S; Holz N; Boecker-Schlier R; Banaschewski T; Brandeis D
    Atten Defic Hyperact Disord; 2019 Mar; 11(1):31-45. PubMed ID: 30225805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses.
    van Duijvenvoorde ACK; Achterberg M; Braams BR; Peters S; Crone EA
    Neuroimage; 2016 Jan; 124(Pt A):409-420. PubMed ID: 25969399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time fMRI neurofeedback training to improve eating behavior by self-regulation of the dorsolateral prefrontal cortex: A randomized controlled trial in overweight and obese subjects.
    Kohl SH; Veit R; Spetter MS; Günther A; Rina A; Lührs M; Birbaumer N; Preissl H; Hallschmid M
    Neuroimage; 2019 May; 191():596-609. PubMed ID: 30798010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volitional regulation of brain responses to food stimuli in overweight and obese subjects: A real-time fMRI feedback study.
    Spetter MS; Malekshahi R; Birbaumer N; Lührs M; van der Veer AH; Scheffler K; Spuckti S; Preissl H; Veit R; Hallschmid M
    Appetite; 2017 May; 112():188-195. PubMed ID: 28131758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated nucleus accumbens structural connectivity associated with proneness to hypomania: a reward hypersensitivity perspective.
    Damme KS; Young CB; Nusslock R
    Soc Cogn Affect Neurosci; 2017 Jun; 12(6):928-936. PubMed ID: 28338785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis.
    Cauda F; Cavanna AE; D'agata F; Sacco K; Duca S; Geminiani GC
    J Cogn Neurosci; 2011 Oct; 23(10):2864-77. PubMed ID: 21265603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depletion of nucleus accumbens dopamine leads to impaired reward and aversion processing in mice: Relevance to motivation pathologies.
    Bergamini G; Sigrist H; Ferger B; Singewald N; Seifritz E; Pryce CR
    Neuropharmacology; 2016 Oct; 109():306-319. PubMed ID: 27036890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.