These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30047917)

  • 1. Dense Deconvolutional Network for Skin Lesion Segmentation.
    Li H; He X; Zhou F; Yu Z; Ni D; Chen S; Wang T; Lei B
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):527-537. PubMed ID: 30047917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Dermoscopic Image Segmentation with Enhanced Convolutional-Deconvolutional Networks.
    Yuan Y; Lo YC
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):519-526. PubMed ID: 29990146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dense deconvolution net: Multi path fusion and dense deconvolution for high resolution skin lesion segmentation.
    He X; Yu Z; Wang T; Lei B; Shi Y
    Technol Health Care; 2018; 26(S1):307-316. PubMed ID: 29758959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dense pooling layers in fully convolutional network for skin lesion segmentation.
    Nasr-Esfahani E; Rafiei S; Jafari MH; Karimi N; Wrobel JS; Samavi S; Reza Soroushmehr SM
    Comput Med Imaging Graph; 2019 Dec; 78():101658. PubMed ID: 31634739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supervised Saliency Map Driven Segmentation of Lesions in Dermoscopic Images.
    Jahanifar M; Zamani Tajeddin N; Mohammadzadeh Asl B; Gooya A
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):509-518. PubMed ID: 29994323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
    Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.
    Bi L; Kim J; Ahn E; Kumar A; Fulham M; Feng D
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2065-2074. PubMed ID: 28600236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active Contours Based Segmentation and Lesion Periphery Analysis For Characterization of Skin Lesions in Dermoscopy Images.
    Riaz F; Naeem S; Nawaz R; Coimbra MT
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):489-500. PubMed ID: 29993589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic skin lesion classification using a new densely connected convolutional network with an SF module.
    Shan P; Fu C; Dai L; Jia T; Tie M; Liu J
    Med Biol Eng Comput; 2022 Aug; 60(8):2173-2188. PubMed ID: 35639329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skin lesion segmentation using high-resolution convolutional neural network.
    Xie F; Yang J; Liu J; Jiang Z; Zheng Y; Wang Y
    Comput Methods Programs Biomed; 2020 Apr; 186():105241. PubMed ID: 31837637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An End-to-End Multi-Task Deep Learning Framework for Skin Lesion Analysis.
    Song L; Lin J; Wang ZJ; Wang H
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2912-2921. PubMed ID: 32071016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully Convolutional Neural Networks to Detect Clinical Dermoscopic Features.
    Kawahara J; Hamarneh G
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):578-585. PubMed ID: 29994053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
    Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G
    Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanoma Recognition in Dermoscopy Images via Aggregated Deep Convolutional Features.
    Yu Z; Jiang X; Zhou F; Qin J; Ni D; Chen S; Lei B; Wang T
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):1006-1016. PubMed ID: 30130171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intelligent skin lesion segmentation using deformable attention Transformer U-Net with bidirectional attention mechanism in skin cancer images.
    Cai L; Hou K; Zhou S
    Skin Res Technol; 2024 Aug; 30(8):e13783. PubMed ID: 39113617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold.
    Fan H; Xie F; Li Y; Jiang Z; Liu J
    Comput Biol Med; 2017 Jun; 85():75-85. PubMed ID: 28460258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melanoma recognition in dermoscopy images using lesion's peripheral region information.
    Tajeddin NZ; Asl BM
    Comput Methods Programs Biomed; 2018 Sep; 163():143-153. PubMed ID: 30119849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SkinFormer: Learning Statistical Texture Representation With Transformer for Skin Lesion Segmentation.
    Xu R; Wang C; Zhang J; Xu S; Meng W; Zhang X
    IEEE J Biomed Health Inform; 2024 Oct; 28(10):6008-6018. PubMed ID: 38913520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GP-CNN-DTEL: Global-Part CNN Model With Data-Transformed Ensemble Learning for Skin Lesion Classification.
    Tang P; Liang Q; Yan X; Xiang S; Zhang D
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2870-2882. PubMed ID: 32142460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saliency-Based Lesion Segmentation Via Background Detection in Dermoscopic Images.
    Ahn E; Kim J; Bi L; Kumar A; Li C; Fulham M; Feng DD
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1685-1693. PubMed ID: 28092585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.