These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30048125)

  • 1. The Role of Fe-Bearing Phyllosilicates in DTPMP Degradation under High-Temperature and High-Pressure Conditions.
    Zhang L; Jun YS
    Environ Sci Technol; 2018 Aug; 52(16):9522-9530. PubMed ID: 30048125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effects of Phosphonate-Based Scale Inhibitor on Brine-Biotite Interactions under Subsurface Conditions.
    Zhang L; Kim D; Jun YS
    Environ Sci Technol; 2018 May; 52(10):6042-6049. PubMed ID: 29668264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sulfate on biotite interfacial reactions under high temperature and high CO
    Zhang L; Zhu Y; Wu X; Jun YS
    Phys Chem Chem Phys; 2019 Mar; 21(12):6381-6390. PubMed ID: 30838369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of iron-bearing phyllosilicates on the dechlorination kinetics of 1,1,1-trichloroethane in Fe(II)/cement slurries.
    Jung B; Batchelor B
    Chemosphere; 2007 Jul; 68(7):1254-61. PubMed ID: 17368506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of phosphate on biotite dissolution and secondary precipitation under conditions relevant to engineered subsurface processes.
    Zhang L; Kim D; Kim Y; Wan J; Jun YS
    Phys Chem Chem Phys; 2017 Nov; 19(44):29895-29904. PubMed ID: 29086792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and microbial reduction of Fe(III) phyllosilicates from subsurface sediments.
    Wu T; Shelobolina E; Xu H; Konishi H; Kukkadapu R; Roden EE
    Environ Sci Technol; 2012 Nov; 46(21):11618-26. PubMed ID: 23061986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal intensification of microbial Fe(II)/Fe(III) redox cycling in a pristine shallow sand aquifer on the Canadian Shield.
    Shirokova VL; Enright AML; Kennedy CB; Ferris FG
    Water Res; 2016 Dec; 106():604-612. PubMed ID: 27780075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite.
    Liu X; Yuan S; Tong M; Liu D
    Water Res; 2017 Apr; 113():72-79. PubMed ID: 28199864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic understanding of calcium-phosphonate solid dissolution and scale inhibitor return behavior in oilfield reservoir: formation of middle phase.
    Zhang P; Shen D; Ruan G; Kan AT; Tomson MB
    Phys Chem Chem Phys; 2016 Aug; 18(31):21458-68. PubMed ID: 27426410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction Pathway-Dependent Formation of Reactive Fe(II) Sites in Clay Minerals.
    Rothwell KA; Pentrak MP; Pentrak LA; Stucki JW; Neumann A
    Environ Sci Technol; 2023 Jul; 57(28):10231-10241. PubMed ID: 37418593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the degradation process of phenol during in-situ thermal desorption: The overlooked oxidation of hydroxyl radicals from oxygenation of reduced Fe-bearing clay minerals.
    Zhang W; Li X; Shen J; Sun Z; Zhou X; Li F; Ma F; Gu Q
    J Hazard Mater; 2023 Feb; 444(Pt A):130401. PubMed ID: 36403451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.
    Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA
    Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of selected bivalent metal ions on the photolysis of diethylenetriamine penta(methylenephosphonic acid).
    Kuhn R; Jensch R; Bryant IM; Fischer T; Liebsch S; Martienssen M
    Chemosphere; 2018 Nov; 210():726-733. PubMed ID: 30036820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of Abundant Hydroxyl Radicals from Oxygenation of Subsurface Sediments.
    Tong M; Yuan S; Ma S; Jin M; Liu D; Cheng D; Liu X; Gan Y; Wang Y
    Environ Sci Technol; 2016 Jan; 50(1):214-21. PubMed ID: 26641489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments.
    Szecsody JE; Girvin DC; Devary BJ; Campbell JA
    Chemosphere; 2004 Aug; 56(6):593-610. PubMed ID: 15212902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Extracellular Enzyme Activity by Reactive Oxygen Species upon Oxygenation of Reduced Iron-Bearing Minerals.
    Sheng Y; Hu J; Kukkadapu R; Guo D; Zeng Q; Dong H
    Environ Sci Technol; 2023 Feb; 57(8):3425-3433. PubMed ID: 36795461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates.
    Lee W; Batchelor B
    Chemosphere; 2004 Sep; 56(10):999-1009. PubMed ID: 15268967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of Fe(II) species associated with clay minerals.
    Hofstetter TB; Schwarzenbach RP; Haderlein SB
    Environ Sci Technol; 2003 Feb; 37(3):519-28. PubMed ID: 12630467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abiotic Degradation of Chlorinated Solvents by Clay Minerals and Fe(II): Evidence for Reactive Mineral Intermediates.
    Entwistle J; Latta DE; Scherer MM; Neumann A
    Environ Sci Technol; 2019 Dec; 53(24):14308-14318. PubMed ID: 31802666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological redox cycling of iron in nontronite and its potential application in nitrate removal.
    Zhao L; Dong H; Kukkadapu RK; Zeng Q; Edelmann RE; PentrĂ¡k M; Agrawal A
    Environ Sci Technol; 2015 May; 49(9):5493-501. PubMed ID: 25873540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.