These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 30048136)

  • 1. Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with Double-Hybrid Density Functional Theory.
    Stoychev GL; Auer AA; Neese F
    J Chem Theory Comput; 2018 Sep; 14(9):4756-4771. PubMed ID: 30048136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-hybrid density functional theory for g-tensor calculations using gauge including atomic orbitals.
    Tran VA; Neese F
    J Chem Phys; 2020 Aug; 153(5):054105. PubMed ID: 32770923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Consistent Field Calculation of Nuclear Magnetic Resonance Chemical Shielding Constants Using Gauge-Including Atomic Orbitals and Approximate Two-Electron Integrals.
    Stoychev GL; Auer AA; Izsák R; Neese F
    J Chem Theory Comput; 2018 Feb; 14(2):619-637. PubMed ID: 29301077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetizability and rotational g tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals.
    Loibl S; Schütz M
    J Chem Phys; 2014 Jul; 141(2):024108. PubMed ID: 25028000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended Benchmark Set of Main-Group Nuclear Shielding Constants and NMR Chemical Shifts and Its Use to Evaluate Modern DFT Methods.
    Schattenberg CJ; Kaupp M
    J Chem Theory Comput; 2021 Dec; 17(12):7602-7621. PubMed ID: 34797677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2014 Sep; 141(12):124108. PubMed ID: 25273413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and relative energy assessments of DFT functionals and the MP2 method to describe the gas phase methylation of nitronates: [R(1)R(2)CNO2](-) + CH3I.
    Mahmood A; Longo RL
    Phys Chem Chem Phys; 2016 Jun; 18(25):17062-70. PubMed ID: 27299164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do Models beyond Hybrid Density Functionals Increase the Agreement with Experiment for Predicted NMR Chemical Shifts or Electric Field Gradient Tensors in Organic Solids?
    Iuliucci RJ; Hartman JD; Beran GJO
    J Phys Chem A; 2023 Mar; 127(12):2846-2858. PubMed ID: 36940431
    [No Abstract]   [Full Text] [Related]  

  • 11. Spin component-scaled second-order Møller-Plesset perturbation theory for calculating NMR shieldings.
    Maurer M; Ochsenfeld C
    J Chem Theory Comput; 2015 Jan; 11(1):37-44. PubMed ID: 26574201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Covalent Interactions with Dual-Basis Methods: Pairings for Augmented Basis Sets.
    Steele RP; DiStasio RA; Head-Gordon M
    J Chem Theory Comput; 2009 Jun; 5(6):1560-72. PubMed ID: 26609849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolution-of-the-identity second-order Møller-Plesset perturbation theory with complex basis functions: Benchmark calculations and applications to strong-field ionization of polyacenes.
    Hernández Vera M; Jagau TC
    J Chem Phys; 2020 May; 152(17):174103. PubMed ID: 32384845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking Hydrogen and Carbon NMR Chemical Shifts at HF, DFT, and MP2 Levels.
    Flaig D; Maurer M; Hanni M; Braunger K; Kick L; Thubauville M; Ochsenfeld C
    J Chem Theory Comput; 2014 Feb; 10(2):572-8. PubMed ID: 26580033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings.
    Stoychev GL; Auer AA; Gauss J; Neese F
    J Chem Phys; 2021 Apr; 154(16):164110. PubMed ID: 33940835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DBH24/08 Database and Its Use to Assess Electronic Structure Model Chemistries for Chemical Reaction Barrier Heights.
    Zheng J; Zhao Y; Truhlar DG
    J Chem Theory Comput; 2009 Apr; 5(4):808-21. PubMed ID: 26609587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost.
    Schwabe T; Grimme S
    Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Third-Order Møller-Plesset Theory Made More Useful? The Role of Density Functional Theory Orbitals.
    Rettig A; Hait D; Bertels LW; Head-Gordon M
    J Chem Theory Comput; 2020 Dec; 16(12):7473-7489. PubMed ID: 33161713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Description of Intra- and Intermolecular Interactions through Dispersion-Corrected Second-Order Møller-Plesset Perturbation Theory.
    Beran GJO; Greenwell C; Cook C; Řezáč J
    Acc Chem Res; 2023 Dec; 56(23):3525-3534. PubMed ID: 37963266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods.
    Grimme S
    J Phys Chem A; 2005 Apr; 109(13):3067-77. PubMed ID: 16833631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.