These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 30048140)
1. Band Tail Engineering in Kesterite Cu Gang MG; Shin SW; Suryawanshi MP; Ghorpade UV; Song Z; Jang JS; Yun JH; Cheong H; Yan Y; Kim JH J Phys Chem Lett; 2018 Aug; 9(16):4555-4561. PubMed ID: 30048140 [TBL] [Abstract][Full Text] [Related]
2. A Facile Process for Partial Ag Substitution in Kesterite Cu Gang MG; Karade VC; Suryawanshi MP; Yoo H; He M; Hao X; Lee IJ; Lee BH; Shin SW; Kim JH ACS Appl Mater Interfaces; 2021 Jan; 13(3):3959-3968. PubMed ID: 33463150 [TBL] [Abstract][Full Text] [Related]
3. Substitution of Ag for Cu in Cu Wu Y; Sui Y; He W; Zeng F; Wang Z; Wang F; Yao B; Yang L Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947756 [TBL] [Abstract][Full Text] [Related]
4. Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol-Gel and Selenization Process. Liu F; Zeng F; Song N; Jiang L; Han Z; Su Z; Yan C; Wen X; Hao X; Liu Y ACS Appl Mater Interfaces; 2015 Jul; 7(26):14376-83. PubMed ID: 26080031 [TBL] [Abstract][Full Text] [Related]
5. Two-Step Annealing CZTSSe/CdS Heterojunction to Improve Interface Properties of Kesterite Solar Cells. Duan B; Lou L; Meng F; Zhou J; Wang J; Shi J; Wu H; Luo Y; Li D; Meng Q ACS Appl Mater Interfaces; 2021 Nov; 13(46):55243-55253. PubMed ID: 34751555 [TBL] [Abstract][Full Text] [Related]
6. Doping of Sb into Cu Zhao B; Deng Y; Cao L; Zhu J; Zhou Z Front Chem; 2022; 10():974761. PubMed ID: 36017168 [TBL] [Abstract][Full Text] [Related]
7. Improving the Device Performance of CZTSSe Thin-Film Solar Cells via Indium Doping. Korade SD; Gour KS; Karade VC; Jang JS; Rehan M; Patil SS; Bhat TS; Patil AP; Yun JH; Park J; Kim JH; Patil PS ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38047907 [TBL] [Abstract][Full Text] [Related]
8. 8% Efficiency Cu Jo E; Gang MG; Shim H; Suryawanshi MP; Ghorpade UV; Kim JH ACS Appl Mater Interfaces; 2019 Jul; 11(26):23118-23124. PubMed ID: 31252467 [TBL] [Abstract][Full Text] [Related]
9. Influencing Mechanism of the Selenization Temperature and Time on the Power Conversion Efficiency of Cu2ZnSn(S,Se)4-Based Solar Cells. Xiao ZY; Yao B; Li YF; Ding ZH; Gao ZM; Zhao HF; Zhang LG; Zhang ZZ; Sui YR; Wang G ACS Appl Mater Interfaces; 2016 Jul; 8(27):17334-42. PubMed ID: 27323648 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of a High-Quality Cu Zhao W; Yu F; Liu SF ACS Appl Mater Interfaces; 2019 Jan; 11(1):634-639. PubMed ID: 30560655 [TBL] [Abstract][Full Text] [Related]
11. Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials. Li J; Wang D; Li X; Zeng Y; Zhang Y Adv Sci (Weinh); 2018 Apr; 5(4):1700744. PubMed ID: 29721421 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the Voltage Losses in CZTSSe Solar Cells of Varying Sn Content. Azzouzi M; Cabas-Vidani A; Haass SG; Röhr JA; Romanyuk YE; Tiwari AN; Nelson J J Phys Chem Lett; 2019 Jun; 10(11):2829-2835. PubMed ID: 31070031 [TBL] [Abstract][Full Text] [Related]
13. Significantly Improving the Crystal Growth of a Cu Shi X; Wang Y; Yu H; Wang G; Huang L; Pan D ACS Appl Mater Interfaces; 2020 Sep; 12(37):41590-41595. PubMed ID: 32814424 [TBL] [Abstract][Full Text] [Related]
14. Is It Possible To Develop Complex S-Se Graded Band Gap Profiles in Kesterite-Based Solar Cells? Andrade-Arvizu J; Izquierdo-Roca V; Becerril-Romero I; Vidal-Fuentes P; Fonoll-Rubio R; Sánchez Y; Placidi M; Calvo-Barrio L; Vigil-Galán O; Saucedo E ACS Appl Mater Interfaces; 2019 Sep; 11(36):32945-32956. PubMed ID: 31426633 [TBL] [Abstract][Full Text] [Related]
15. Tuning the Band Gap of Cu₂ZnSn(S,Se)₄ Thin Films via Lithium Alloying. Yang Y; Kang X; Huang L; Pan D ACS Appl Mater Interfaces; 2016 Mar; 8(8):5308-13. PubMed ID: 26837657 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Carrier Collection in Cd/In-Based Dual Buffers in Kesterite Thin-Film Solar Cells from Nanoparticle Inks. Campbell S; Zoppi G; Bowen L; Maiello P; Barrioz V; Beattie NS; Qu Y ACS Appl Energy Mater; 2023 Nov; 6(21):10883-10896. PubMed ID: 38020741 [TBL] [Abstract][Full Text] [Related]
17. Insight into the Role of Rb Doping for Highly Efficient Kesterite Cu Miao C; Sui Y; Cui Y; Wang Z; Yang L; Wang F; Liu X; Yao B Molecules; 2024 Aug; 29(15):. PubMed ID: 39125076 [TBL] [Abstract][Full Text] [Related]
18. Facile Approach for Metallic Precursor Engineering for Efficient Kesterite Thin-Film Solar Cells. Park SW; He M; Jang JS; Kamble GU; Suryawanshi UP; Baek MC; Suryawanshi MP; Gang MG; Park Y; Choi HJ; Hao X; Shin SW; Kim JH ACS Appl Mater Interfaces; 2024 Apr; 16(13):16328-16339. PubMed ID: 38516946 [TBL] [Abstract][Full Text] [Related]
19. Kesterite Solar Cells: Insights into Current Strategies and Challenges. He M; Yan C; Li J; Suryawanshi MP; Kim J; Green MA; Hao X Adv Sci (Weinh); 2021 May; 8(9):2004313. PubMed ID: 33977066 [TBL] [Abstract][Full Text] [Related]
20. Solution-Processed Cu2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source. Guo J; Pei Y; Zhou Z; Zhou W; Kou D; Wu S Nanoscale Res Lett; 2015 Dec; 10(1):1045. PubMed ID: 26293494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]