BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30048152)

  • 1. Radiolytic H
    Dzaugis M; Spivack AJ; D'Hondt S
    Astrobiology; 2018 Sep; 18(9):1137-1146. PubMed ID: 30048152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer.
    Dzaugis ME; Spivack AJ; Dunlea AG; Murray RW; D'Hondt S
    Front Microbiol; 2016; 7():76. PubMed ID: 26870029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Maximum Subsurface Biomass on Mars from Untapped Free Energy: CO and H
    Sholes SF; Krissansen-Totton J; Catling DC
    Astrobiology; 2019 May; 19(5):655-668. PubMed ID: 30950631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for Seismogenic Hydrogen Gas, a Potential Microbial Energy Source on Earth and Mars.
    McMahon S; Parnell J; Blamey NJ
    Astrobiology; 2016 Sep; 16(9):690-702. PubMed ID: 27623198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of water radiolysis to marine sedimentary life.
    Sauvage JF; Flinders A; Spivack AJ; Pockalny R; Dunlea AG; Anderson CH; Smith DC; Murray RW; D'Hondt S
    Nat Commun; 2021 Feb; 12(1):1297. PubMed ID: 33637712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiolytic hydrogen and microbial respiration in subsurface sediments.
    Blair CC; D'Hondt S; Spivack AJ; Kingsley RH
    Astrobiology; 2007 Dec; 7(6):951-70. PubMed ID: 18163872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Earth-like Habitable Environments in the Subsurface of Mars.
    Tarnas JD; Mustard JF; Sherwood Lollar B; Stamenković V; Cannon KM; Lorand JP; Onstott TC; Michalski JR; Warr O; Palumbo AM; Plesa AC
    Astrobiology; 2021 Jun; 21(6):741-756. PubMed ID: 33885329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Radiolytic Degradation of Amino Acids in the Martian Shallow Subsurface: Implications for the Search for Extinct Life.
    Pavlov AA; McLain HL; Glavin DP; Roussel A; Dwork In JP; Elsila JE; Yocum KM
    Astrobiology; 2022 Sep; 22(9):1099-1115. PubMed ID: 35749703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ancient Siliciclastic-Evaporites as Seen by Remote Sensing Instrumentation with Implications for the Rover-Scale Exploration of Sedimentary Environments on Mars.
    Meyer MJ; Milliken RE; Hurowitz JE; Robertson KM
    Astrobiology; 2023 May; 23(5):477-495. PubMed ID: 36944138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration.
    Onstott TC; Ehlmann BL; Sapers H; Coleman M; Ivarsson M; Marlow JJ; Neubeck A; Niles P
    Astrobiology; 2019 Oct; 19(10):1230-1262. PubMed ID: 31237436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological potential of Martian hydrothermal systems.
    Varnes ES; Jakosky BM; McCollom TM
    Astrobiology; 2003; 3(2):407-14. PubMed ID: 14577887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic Strength Is a Barrier to the Habitability of Mars.
    Fox-Powell MG; Hallsworth JE; Cousins CR; Cockell CS
    Astrobiology; 2016 Jun; 16(6):427-42. PubMed ID: 27213516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jarosite as an indicator of water-limited chemical weathering on Mars.
    Madden ME; Bodnar RJ; Rimstidt JD
    Nature; 2004 Oct; 431(7010):821-3. PubMed ID: 15483605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the Mineral Assemblages of Hot Spring Environments and Applications to Mars Orbital Data.
    Sun VZ; Milliken RE
    Astrobiology; 2020 Apr; 20(4):453-474. PubMed ID: 31545076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modern and ancient extremely acid saline deposits: terrestrial analogs for martian environments?
    Benison KC; LaClair DA
    Astrobiology; 2003; 3(3):609-18. PubMed ID: 14678669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters.
    Adcock CT; Hausrath EM
    Astrobiology; 2015 Dec; 15(12):1060-75. PubMed ID: 26684505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cosmogenic and nucleogenic isotopic changes in Mars: their rates and implications to the evolutionary history of Martian surface.
    Lal D
    Geochim Cosmochim Acta; 1993 Oct; 57(19):4627-37. PubMed ID: 11539580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineral Indicators of Geologically Recent Past Habitability on Mars.
    Hart R; Cardace D
    Life (Basel); 2023 Dec; 13(12):. PubMed ID: 38137950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The divergent fates of primitive hydrospheric water on Earth and Mars.
    Wade J; Dyck B; Palin RM; Moore JDP; Smye AJ
    Nature; 2017 Dec; 552(7685):391-394. PubMed ID: 29293210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FTIR reflectance of selected minerals and their mixtures: implications for ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station).
    Martín-Redondo MP; Martínez ES; Sampedro MT; Armiens C; Gómez-Elvira J; Martinez-Frias J
    J Environ Monit; 2009 Jul; 11(7):1428-32. PubMed ID: 20449234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.